首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设(I)和(Ⅱ)是两个四元齐次线性方程组,(I)的系数矩阵为 (Ⅱ)的一个基础解系为η1=(2,一1,a+2,1)T,η2=(一1,2,4,a+8)T. (1)求(I)的一个基础解系; (2)a为什么值时(I)和(Ⅱ)有公共非零解?此时求出全部公共非零解
设(I)和(Ⅱ)是两个四元齐次线性方程组,(I)的系数矩阵为 (Ⅱ)的一个基础解系为η1=(2,一1,a+2,1)T,η2=(一1,2,4,a+8)T. (1)求(I)的一个基础解系; (2)a为什么值时(I)和(Ⅱ)有公共非零解?此时求出全部公共非零解
admin
2020-03-05
48
问题
设(I)和(Ⅱ)是两个四元齐次线性方程组,(I)的系数矩阵为
(Ⅱ)的一个基础解系为η
1
=(2,一1,a+2,1)
T
,η
2
=(一1,2,4,a+8)
T
.
(1)求(I)的一个基础解系;
(2)a为什么值时(I)和(Ⅱ)有公共非零解?此时求出全部公共非零解.
选项
答案
(1)把(I)的系数矩阵用初等行变换化为简单阶梯形矩阵 [*] 得到(I)的同解方程组 [*] 对自由未知量x
3
,x
4
赋值,得(I)的基础解系γ
1
=(5,一3,1,0)
T
,γ
3
=(一3,2,0,1)
T
. (2)(Ⅱ)的通解为c
1
η
1
+c
2
η
2
=(2c
1
—c
2
,一c
1
+2c
2
,(a+2)c
1
+4c
2
,c
1
+(a+8)c
2
)
T
. 将它代入(I),求出为使c
1
η
1
+c
2
η
2
也是(I)的解(从而是(I)和(Ⅱ)的公共解),c
1
,c
2
应满足的条件(过程略)为: [*] 于是当a+1≠0时,必须c
1
=c
2
=0,即此时公共解只有零解. 当a+1=0时,对任何c
1
,c
2
,c
1
η
1
+c
2
η
2
都是公共解.从而(I),(Ⅱ)有公共非零解.此时它们的公共非零解也就是(Ⅱ)的非零解:c
1
η
1
+c
2
η
2
,c
1
,c
2
不全为0.
解析
转载请注明原文地址:https://kaotiyun.com/show/DwS4777K
0
考研数学一
相关试题推荐
设X和Y为两个随机变量,且P{X≥0,Y≥0}=,则P{min{X,Y}<0}=________.
微分方程xy’=的通解为___________.
在全概率公式P(B)=P(Ai)P(B|Ai)中,除了要求条件B是任意随机事件及P(AI)>0(i=1,2,…,n)之外,我们可以将其他条件改为
设直线在平面x+y+z=0上的投影为直线L,则点(1,2,1)到直线L的距离等于___________.
设直线L1:则直线L1,L2的夹角为().
设总体X服从正态分布N(μ,σ2),X1,X2,…,Xn(n>1)是取自总体的简单随机样本,样本均值为()
已知ξ1=(一3,2,0)T,ξ2=(一1,0,一2)T是方程组的两个解,则此方程组的通解是___________.
设幂级数在x=3条件收敛,则该幂级数收敛半径为__________.
设φ1(x),φ2(x),φ3(x)为二阶非齐次线性方程y"+a1(x)y’+a2(x)y=f(x)的三个线性无关的解,则该方程的通解为()
讨论函数f(x)=在x=0处的连续性与可导性.
随机试题
神经细胞兴奋时,首先产生扩布性动作电位的部位是
患者,男,17岁。咳嗽5天,咳声嘶哑,喉燥咽痛,咳痰不爽,痰黄黏稠,咳时汗出,伴鼻流黄涕,口渴,头痛,身楚。其中医治法是
内痔病人预防便秘的措施中,无关的是()。
对于钢筋直径小于或等于()mm的非轴心受拉构件等的接头,可采用绑扎接头。
海运单和航空货运单收货人一栏,若显示“TOORDER”或“TOORDEROFsHIPPER”等字样,则表示受托运人指示。()
股票期权计划的局限性在于()。
2011年1月,甲、乙、丙、丁、戊共同出资设立A有限合伙企业(简称A企业),从事产业投资活动。其中,甲、乙、丙为普通合伙人,丁、戊为有限合伙人。丙负责执行合伙事务。2011年2月,丙请丁物色一家会计师事务所,以承办本企业的审计业务。、丁在合伙人会议上提议聘
根据《支付结算办法》的规定,下列款项中,不能办理托收承付结算的是()。
如图,一块边长为180厘米的正方形铁片,四角各被截去了一个边长为40厘米的小正方形,现在要从剩下的铁片中剪出一块完整的正方形铁片来,剪出的正方形面积最大为()平方厘米。
若有以下程序段:structst{intn;int*m;};.inta=2,b=3,c=5;structsts[3]=({101,&a),{102,&c),{1
最新回复
(
0
)