首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,+∞)上连续,在(0,+∞)内可导,当xε(0,+∞)时f(x)>0且单调上升,x=g(y)为y=f(x)的反函数,它们满足=t3(t≥0),则f(x)的表达式是_________________________。
设f(x)在[0,+∞)上连续,在(0,+∞)内可导,当xε(0,+∞)时f(x)>0且单调上升,x=g(y)为y=f(x)的反函数,它们满足=t3(t≥0),则f(x)的表达式是_________________________。
admin
2018-11-16
45
问题
设f(x)在[0,+∞)上连续,在(0,+∞)内可导,当xε(0,+∞)时f(x)>0且单调上升,x=g(y)为y=f(x)的反函数,它们满足
=t
3
(t≥0),则f(x)的表达式是_________________________。
选项
答案
f(x)=x
2
(x≥0)
解析
方法一:由定积分的几何意义知:
=由曲线y=f(x),x、y轴及直线x=t>0所围成的曲边梯形的面积,
=由曲线x=g(y),y轴(y≥f(0))及直线y=f(t)所围成的曲边三角形的面积。x=g(y)与y=f(x)互为反函数,代表同一条曲线,它们面积之和是长方形面积(边长分别为t与f(t)),见下图。
于是
,因此tf(t)=t
3
,f(t)=t
2
(t≥0),即f(x)=x
2
(x≥0)。
方法二:先化简题设方程的左端式子,有
于是
,即tf(t)=t
3
,f(t)=t
2
(t≥0),因此f(x)=x
2
(x≥0)。
方法三:将题设方程两边求导得
,即f(t)+g[f(t)]f
’
t=3t
2
,f(t)=tf
’
(t)=3t
2
,亦即[tf(t)]
’
=3t
2
。(原方程中令t=0,等式自然成立,不必另加条件),将上式积分得tf(t)=t
3
+C,即
,因f(t)在[0,+∞)上连续,故必有C=0,因此f(x)=x
2
(x≥0)。
转载请注明原文地址:https://kaotiyun.com/show/DyW4777K
0
考研数学三
相关试题推荐
∫max{x+2x2}dx=________.
[*]
设证明A可对角化;
随机变量(X,Y)的联合密度函数为f(x,y)=求(x,y)落在区域x2+y2≤内的概率.
设X,Y的概率分布为,且P(XY=0)=1.X,Y是否独立?
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)==r<n,证明:方程组AX=b的线性无关的解向量的个数最多是n一r+l个.
设二元函数f(x,y)=|x一y|φ(x,y),其中φ(x,y)在点(0,0)处的某邻域内连续.证明:函数f(x,y)在点(0,0)处可微的充分必要条件是φ(0,0)=0.
根据以往经验,某种电器元件的寿命服从均值为100小时的指数分布。现随机地取16只,设它们的寿命是相互独立的。求这16只元件的寿命的总和大于1920小时的概率。
设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2—4),若对任意的x都满足f(x)=kf(x+2),其中k为常数。(Ⅰ)写出f(x)在[—2,0)上的表达式;(Ⅱ)问k为何值时,f(x)在x=0处可导。
随机试题
最难将息。
RNA中所含的碱基通常有
直接转换技术的DR中应用的转换介质是
一个人或一个群体从一个社会位置到另一个高低不同的位置上是()。
根据《干粉灭火系统设计规范》(GB50347),下列说法正确的有()。
我国会计法律制度主要包括()。
基金托管人没有单独处分基金财产的权利。()
短期借款用途证明文件不包括()。
Shedidn’tknow______backsoon.
We’dBetterReadforPleasure/WatchTVIthasbeenbelievedthatpeoplewhoreadforpleasurehavedevelopedimaginationand
最新回复
(
0
)