首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,+∞)上连续,在(0,+∞)内可导,当xε(0,+∞)时f(x)>0且单调上升,x=g(y)为y=f(x)的反函数,它们满足=t3(t≥0),则f(x)的表达式是_________________________。
设f(x)在[0,+∞)上连续,在(0,+∞)内可导,当xε(0,+∞)时f(x)>0且单调上升,x=g(y)为y=f(x)的反函数,它们满足=t3(t≥0),则f(x)的表达式是_________________________。
admin
2018-11-16
73
问题
设f(x)在[0,+∞)上连续,在(0,+∞)内可导,当xε(0,+∞)时f(x)>0且单调上升,x=g(y)为y=f(x)的反函数,它们满足
=t
3
(t≥0),则f(x)的表达式是_________________________。
选项
答案
f(x)=x
2
(x≥0)
解析
方法一:由定积分的几何意义知:
=由曲线y=f(x),x、y轴及直线x=t>0所围成的曲边梯形的面积,
=由曲线x=g(y),y轴(y≥f(0))及直线y=f(t)所围成的曲边三角形的面积。x=g(y)与y=f(x)互为反函数,代表同一条曲线,它们面积之和是长方形面积(边长分别为t与f(t)),见下图。
于是
,因此tf(t)=t
3
,f(t)=t
2
(t≥0),即f(x)=x
2
(x≥0)。
方法二:先化简题设方程的左端式子,有
于是
,即tf(t)=t
3
,f(t)=t
2
(t≥0),因此f(x)=x
2
(x≥0)。
方法三:将题设方程两边求导得
,即f(t)+g[f(t)]f
’
t=3t
2
,f(t)=tf
’
(t)=3t
2
,亦即[tf(t)]
’
=3t
2
。(原方程中令t=0,等式自然成立,不必另加条件),将上式积分得tf(t)=t
3
+C,即
,因f(t)在[0,+∞)上连续,故必有C=0,因此f(x)=x
2
(x≥0)。
转载请注明原文地址:https://kaotiyun.com/show/DyW4777K
0
考研数学三
相关试题推荐
设,则a=________.
设非零n维列向量α,β正交且A=αβT.证明:A不可以相似对角化.
设(X,Y)在区域D:0<x<1,|y|≤x内服从均匀分布.设Z=2X+1,求D(Z).
设X~N(0,1),Y=X2,求Y的概率密度函数.
设为正定矩阵,令P=证明:D=BA一1BT为正定矩阵.
设二元函数f(x,y)=|x一y|φ(x,y),其中φ(x,y)在点(0,0)处的某邻域内连续.证明:函数f(x,y)在点(0,0)处可微的充分必要条件是φ(0,0)=0.
设总体X~N(μ,σ2),其中μ已知,σ2>0为未知参数,X1,X2,…,Xn是来自总体X的样本,则σ2的置信度为1一a的置信区间为().
设函数f(x)有反函数g(x),且f(a)=3,f’(a)=1,f’’(a)=2,求g’’(3).
设函数f(χ)在(0,+∞)上可导,f(0)=0,且其反函数为g(χ).若∫0f(χ)g(t)dt=χ2eχ,求f(χ)=_______.
设幂级数在(一∞,+∞)内收敛,其和函数y(x)满足.y’’一2xy’一4y=0,且y(0)=0,y’(0)=1.求y(x)的表达式.
随机试题
在Word中,段落是按______来划分的。
治疗寒热错杂的代表方剂是
A.艾叶B.槐花C.蒲黄D.藕节E.三七性温,善化瘀止血,活血定痛的是()。
以下医嘱应最先执行的是()
数列“12、13、14、15、16”的算术平均数是()。
(2011年)大气压力为B,系统中工质真空表压力读数为p1时,系统的真实压力为()。
债权人应当在人民法院确定的债权申报期限内向管理人申报债权,下列选项中可以不申报的是()。
终身教育就是成人教育,是许多学制改革的发展趋势。()
我国少数民族中,人口最多的是()。
Despiteitsfishlikeform,thewhaleis______andwilldrownifsubmergedtoolong.
最新回复
(
0
)