首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(t)在[0,π]上连续,在(0,π)内可导,且∫0πf(x)cosxdx=∫0πf(x)sinxdx=0.证明:存在ξ∈(0,π),使得f’(ξ)=0.
设f(t)在[0,π]上连续,在(0,π)内可导,且∫0πf(x)cosxdx=∫0πf(x)sinxdx=0.证明:存在ξ∈(0,π),使得f’(ξ)=0.
admin
2021-10-18
50
问题
设f(t)在[0,π]上连续,在(0,π)内可导,且∫
0
π
f(x)cosxdx=∫
0
π
f(x)sinxdx=0.证明:存在ξ∈(0,π),使得f’(ξ)=0.
选项
答案
令F(x)=∫
0
x
f(t)sintdt,因为F(0)=F(π)=0,所以存在x
1
∈(0,π),使得F’(x
1
)=0,即f(x
1
)sinx
1
=0,又因为sinx
1
≠0,所以f(x
1
)=0.设x
1
是f(x)在(0,π)内唯一的零点,则当x∈(0,π)且x≠x
1
时,有sin(x-x
1
)f(x)恒正或恒负,于是∫
0
π
sin(x-x
1
)f(x)dx≠0.而∫
0
π
sin(x-x
1
)f(x)dx=cosx
1
∫
0
π
f(x)sinxdx-sinx
1
∫
0
π
f(x)cosxdx=0,矛盾,所f(x)在(0,π)内至少有两个零点,不妨设f(x
1
)=f(x
2
)=0,x
1
,x
2
∈(0,π)且x
1
<x
2
,由罗尔中值定理,存在ξ∈(x
1
,x
2
)∈(0,π),使得f’(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/E3y4777K
0
考研数学二
相关试题推荐
求∫arcsin2χdχ.
设f’(x)在[a,b]上连续,且f’(a)>0,f’(b)<0,则下列结论中错误的是
函数f(x,y)在(0,0)点可微的充分条件是()
设z=f(xy)+yφ(x+y),且f,φ具有二阶连续偏导数,求
设曲线y=x2+ax+b和2y=-1+xy3在点(1,-1)处相切,其中a,b是常数,则
曲线y=()
设矩阵A=(aij)3×3满足A*=AT,若a11,a12,a13为三个相等的正数,则a11等于
设f(x)一阶连续可导,且f(0)=0,f’(0)≠0,则=____________.
∫sinx/(1+sinx)dx=________.
随机试题
支气管扩张病变可分为:
以下药物停药后会损害食管的有()。
工程各参建单位填写的工程档案应以( )等为依据。
()是指销售产品或者提供服务取得的收入,是项目运营期现金流入的主体。
根据《水利水电工程标准施工招标文件》,由于发包人责任引起的工期延误事件发生后,若发包人要求承包人修订的进度计划仍应保证工程按期完工,则由于采取赶工措施所增加的费用应由()承担。
在工作中,团结合作原则要求银行业从业人员应该树立()。
从科学史看,理论再伟大,也只有在特定的范围内才是正确的。标准模型虽然即将被证实,但其依然位于微观世界,无法解释宏观世界中的万有引力。《新科学家》撰文写道:“希格斯玻色子(也称为‘上帝粒子’)是标准模型的最后一块拼图,但我们知道,这个模型之外,还有其他的粒子
ItisgenerallyrecognizedintheworldthatthesecondGulfWarinIraqisacrucialtestofhigh-speedWeb.Fordecades,Ameri
假设EXAM.DOC文件夹存储在EXAM1文件夹中,EXAM2文件夹存储在EXAM1文件夹中,EXAM1文件夹存储在D盘的根文件夹中,当前文件夹为EXAM2,那么,正确描述EXAM.DOC文件的相对路径为(41)。
Asthemountainswerecoveredwitha______ofcloud,wecouldn’tseetheirtops.
最新回复
(
0
)