首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(t)在[0,π]上连续,在(0,π)内可导,且∫0πf(x)cosxdx=∫0πf(x)sinxdx=0.证明:存在ξ∈(0,π),使得f’(ξ)=0.
设f(t)在[0,π]上连续,在(0,π)内可导,且∫0πf(x)cosxdx=∫0πf(x)sinxdx=0.证明:存在ξ∈(0,π),使得f’(ξ)=0.
admin
2021-10-18
30
问题
设f(t)在[0,π]上连续,在(0,π)内可导,且∫
0
π
f(x)cosxdx=∫
0
π
f(x)sinxdx=0.证明:存在ξ∈(0,π),使得f’(ξ)=0.
选项
答案
令F(x)=∫
0
x
f(t)sintdt,因为F(0)=F(π)=0,所以存在x
1
∈(0,π),使得F’(x
1
)=0,即f(x
1
)sinx
1
=0,又因为sinx
1
≠0,所以f(x
1
)=0.设x
1
是f(x)在(0,π)内唯一的零点,则当x∈(0,π)且x≠x
1
时,有sin(x-x
1
)f(x)恒正或恒负,于是∫
0
π
sin(x-x
1
)f(x)dx≠0.而∫
0
π
sin(x-x
1
)f(x)dx=cosx
1
∫
0
π
f(x)sinxdx-sinx
1
∫
0
π
f(x)cosxdx=0,矛盾,所f(x)在(0,π)内至少有两个零点,不妨设f(x
1
)=f(x
2
)=0,x
1
,x
2
∈(0,π)且x
1
<x
2
,由罗尔中值定理,存在ξ∈(x
1
,x
2
)∈(0,π),使得f’(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/E3y4777K
0
考研数学二
相关试题推荐
求极限:
累次积分f(rcosθ,rsinθ)rdr可以写成().
设z=f(χ,y)=则f(χ,y)在点(0,0)处
向量组α1,α2,…,αa线性无关的充分必要条件是
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,且f’+(a)>0.证明:存在ξ∈(a,b),使得f’’(ξ)<0.
已知y1=xex+e2x和y2=xex+e-x是二阶常系数非齐次线性微分方程的两个解,则此方程为()
设A为n阶方阵,且AAT=E,若|A|<0,证明|A+E|=0.
计算,其中D是由圆心在点(a,a)、半径为a且与坐标轴相切的圆周的较短一段弧和坐标轴所围成的区域.
设矩阵A=(aij)3×3满足A*=AT,若a11,a12,a13为三个相等的正数,则a11等于【】
设f(x)∈C[-π,π],且f(x)=x/(1+cos2x)+∫-ππf(x)sinxdx,求f(x).
随机试题
投射性测验的理论基础是
城市规划的分析方法有()三类。
安装胀锚地脚螺栓对基础的强度要求较高,其基础混凝土强度不得小于()。
湿软地基加固常用的方法包括()。
某房地产开发公司委托某监理公司对开发项目实施监理工作,并签订了《委托监理合同》。委托监理合同是房地产开发公司和监理公司约定,由()处理委托人事务的合同。
下列关于注册商标的表述,不正确的是()。
景区讲解员在进行本景区导游讲解中应注意的问题主要有()。
古典诗歌的译者不是古人,他无需为古人翻译,无论是原诗所属的古人,还是译诗所属的古人。事实上,采用英诗传统格律,当代英语读者并不买账。自新诗运动以来,英诗的创作已彻底摆脱了传统格律的束缚,翻译也是如此。美国新诗运动的主帅庞德以自由体译中国古典诗歌18首,大受
①回家,意味着亲人团聚、阖家团圆,更意味着对家庭传承的触摸、向家风传统的回归②对领导干部而言,家风更是砥砺品行、干事创业不可或缺的精神指针③家,不仅是情感牵挂,更是一个人安身立命、修身立德的精神起点④家风犹如家庭成员的精神纽带,是道德品质的世代积累,
Aswehaveseen,thereisnothingaboutlanguageassuchthatmakeslinguisticidentitycoextensivewithnationalidentity."If
最新回复
(
0
)