首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
就常数a的不同取值情况,讨论方程χe-χ=a(a>0)的实根.
就常数a的不同取值情况,讨论方程χe-χ=a(a>0)的实根.
admin
2017-11-09
46
问题
就常数a的不同取值情况,讨论方程χe
-χ
=a(a>0)的实根.
选项
答案
令f(χ)=χe
-χ
-a,则f′(χ)=(1-χ)e
-χ
,f〞(χ)=(χ-2)e
-χ
. 令f′(χ)=0,得驻点χ=1. 由于当χ∈(-∞,1)时,f′(χ)>0,f(χ)在(-∞,1)单调增加, 当χ∈(1,+∞)时,f′(χ)<0,f(χ)在(1,+∞)内单调减少, 所以f(χ)在χ=1处取得极大值,即最大值为f(1)=e
-1
-a. 则①当e
-1
-a<0时,即a>[*]时,f(χ)≤f(1)<0,方程χe
-χ
=a无实根. ②当e
-1
-a=0,即a=[*]时,只有f(1)=0,而当χ≠1时,f(χ)<f(1)=0,方程χe
-χ
=a只有一个实根χ=1. ③当e
-1
-a>0,即a<[*]时,由于[*](χe
-χ
-a)=-∞,f(1)=e
-1
-a>0,f(χ)在(-∞,1)内单调增加,则f(χ)=0在(-∞,1)内只有一个实根. 又因[*]=-a<0,f(1)=e
-1
-a>0, f(χ)在(1,+∞)内单调递减,则f(χ)=0在(1,+∞)内只有一个实根. 所以方程χe
-χ
=a正好有两个实根.
解析
转载请注明原文地址:https://kaotiyun.com/show/E6X4777K
0
考研数学三
相关试题推荐
设f(x)是在[a,b]上连续且严格单调的函数,在(a,b)内可导,且f(a)=a<b=f(b).证明:存在ξi∈(a,b)(i=1,2,…,n),使得=1.
A=,求a,b及可逆矩阵P,使得P-1AP=B.
设A为三阶方阵,A的每行元素之和为5,AX=0的通解为,求Aβ.
A,B为n阶矩阵且r(A)+r(B)<n.证明:方程组AX=0与BX=0有公共的非零解.
设有方程组AX=0与BX=0,其中A,B都是m×n矩阵,下列四个命题:(1)若AX=0的解都是BX=0的解,则r(A)≥r(B)(2)若r(A)≥r(B),则AX=0的解都是BX=0的解(3)若AX=0与BX=0同解,则r(A)=r(B)
向量组α1,α2,…,αm线性无关的充分必要条件是().
设一部机器一天内发生故障的概率为,机器发生故障时全天停止工作.若一周5个工作日无故障,则可获利10万元;发生一次故障获利5万元;发生两次故障获利0元;发生三次及以上的故障亏损2万元,求一周内利润的期望值.
计算二重积分其中D={(x,y)|0≤y≤x,x2+y2≤2x}.
假设有四张同样卡片,其中三张上分别只印有a1,a2,a3,而另一张上同时印有a1,a2,a3,现在随意抽取一张卡片,令Ak={卡片上印有ak)。证明:事件A1,A2,A3两两独立但不相互独立.
证明函数恒等式,arctanx=x∈(一1,1).
随机试题
A.识别启动子B.识别终止子C.识别起始密码子D.合成RNA引物E.切除RNA引物大肠埃希菌DNA聚合酶Ⅰ能够
有明显神经精神症状的营养性巨幼细胞性贫血,首选的治疗是
支原体与立克次体均属于原核细胞型微生物,其特点是均没有细胞壁。()
背景资料:某施工单位承接了一座公路隧道的土建及交通工程施工项目,该隧道为单洞双向行驶的两车道深埋隧道,设计净高5m,净宽12m,总长3500m,隧道穿越的地层有:砂岩、页岩、泥灰岩,局部夹有煤层,裂隙发育。设计采用新奥法施工、分部开挖和复合式衬砌,按规范
经济核算是控制机械设备费用的最好方法,下列属于其核算形式的是( )。
关于基础工程大体积混凝土浇筑施工技术的说法,正确的有()。
下列哪一项属于我国基金业发展的特点?()
在平面直角坐标系中,椭圆C和圆C0均以原点为中心.设椭圆C的方程为=1(a>b>0),⊙C0和x轴的交点与椭圆的焦点重合,且圆C0与椭圆C相交于四点,将这四点连接起来得到一个长方形.若椭圆c的短轴长为,求椭圆C和⊙C0的方程.
甲、乙双方约定,租赁合同自6月1IZI:~始生效。这里的“6月1日”在性质上是()。
inta=4;intf(intn)main(){intt=0;staticinta=5;{ints=a,i=0;if(n%2){inta=6;t+=a++;}for(;i<2;i++)
最新回复
(
0
)