首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
就常数a的不同取值情况,讨论方程χe-χ=a(a>0)的实根.
就常数a的不同取值情况,讨论方程χe-χ=a(a>0)的实根.
admin
2017-11-09
38
问题
就常数a的不同取值情况,讨论方程χe
-χ
=a(a>0)的实根.
选项
答案
令f(χ)=χe
-χ
-a,则f′(χ)=(1-χ)e
-χ
,f〞(χ)=(χ-2)e
-χ
. 令f′(χ)=0,得驻点χ=1. 由于当χ∈(-∞,1)时,f′(χ)>0,f(χ)在(-∞,1)单调增加, 当χ∈(1,+∞)时,f′(χ)<0,f(χ)在(1,+∞)内单调减少, 所以f(χ)在χ=1处取得极大值,即最大值为f(1)=e
-1
-a. 则①当e
-1
-a<0时,即a>[*]时,f(χ)≤f(1)<0,方程χe
-χ
=a无实根. ②当e
-1
-a=0,即a=[*]时,只有f(1)=0,而当χ≠1时,f(χ)<f(1)=0,方程χe
-χ
=a只有一个实根χ=1. ③当e
-1
-a>0,即a<[*]时,由于[*](χe
-χ
-a)=-∞,f(1)=e
-1
-a>0,f(χ)在(-∞,1)内单调增加,则f(χ)=0在(-∞,1)内只有一个实根. 又因[*]=-a<0,f(1)=e
-1
-a>0, f(χ)在(1,+∞)内单调递减,则f(χ)=0在(1,+∞)内只有一个实根. 所以方程χe
-χ
=a正好有两个实根.
解析
转载请注明原文地址:https://kaotiyun.com/show/E6X4777K
0
考研数学三
相关试题推荐
设f(x)在[0,1]上二阶可导,且f(0)=f(1)=0.证明:存在ξ∈(0,1),使得f"(ξ)=
设A为实对称矩阵,且A的特征值都大于零.证明:A为正定矩阵.
设f(x)的一个原函数为F(x),且F(x)为方程xy’+y=ex的满足=1的解。(1)求F(x)关于x的幂级数;(2)求的和.
设an=∫01x2(1一x)ndx,讨论级数的敛散性,若收敛求其和.
设二阶常系数线性微分方程y"+ay’+by=ce有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解.
电话公司有300台分机,每台分机有6%的时间处于与外线通话状态,设每台分机是否处于通话状态相互独立,用中心极限定理估计至少安装多少条外线才能保证每台分机使用外线不必等候的概率不低于0.95?
积分=()
设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.计算并化简PQ;
已知二次型f(x1,x2,x3)=422一3x32+4x1x2—4x1x3+8x2x3.写出二次型f的矩阵表达式;
以下4个结论:(1)教室中有r个学:生,则他们的生日都不相同的概率是(2)教室中有4个学生,则至少两个人的生日在同一个月的概率是(3)将C,C,E,E,J,N,S共7个字母随机地排成一行,恰好排成英文单词SCIENCE的概率是(4)袋中有编号为1到
随机试题
阅读材料并回答问题:如何以更好的质量实现经济社会的发展,是我们面临的也是必须要解决好的重大问题。在未来的发展中,资源环境对经济发展已构成严重制约,城乡之间、区域之间、经济与社会之间发展不平衡的矛盾趋于突出,资源相对短期、生态环境脆弱、环境容量不足
mRNA剪接过程中被去除的部分叫做
某猪场2岁种公猪,精神沉郁,步态强拘,拱背,腰部触诊敏感,常做排尿姿势。尿检可见红细胞、白细胞、盐类结晶、肾上皮细胞,该病可能的诊断是()
A.桂枝茯苓丸B.香棱丸C.启宫丸D.开郁种玉汤E.开郁二陈汤
甲河是多国河流,乙河是国际河流。根据国际法相关规则,下列哪些选项是正确的?(2011—卷一—74,多)
根据《建筑工程施工质量验收统一标准》GB50300—2013,建筑工程质量验收的最小单元是()。
根据《中华人民共和国村民委员会组织法》,村务监督委员会成员的产生方式是()。
案例下面是某求助者的WAIS-RC测验结果:根据以上测验得分,可以判断该求助者()
Manythingsmakepeoplethinkartistsareweird.Buttheweirdestmaybethis:artists’onlyjobistoexploreemotions,andyet
Yearsaftertheeconomicrecessionwitnessed_________businessrecoverythroughoutthewholenation.
最新回复
(
0
)