首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2003年] 过坐标原点作曲线y=lnx的切线,该切线与曲线y=lnx及x轴围成平面图形D. 求D绕直线x=e旋转一周所得旋转体体积V.
[2003年] 过坐标原点作曲线y=lnx的切线,该切线与曲线y=lnx及x轴围成平面图形D. 求D绕直线x=e旋转一周所得旋转体体积V.
admin
2019-04-08
49
问题
[2003年] 过坐标原点作曲线y=lnx的切线,该切线与曲线y=lnx及x轴围成平面图形D.
求D绕直线x=e旋转一周所得旋转体体积V.
选项
答案
切线y=x/e与x轴及直线x=e所围成的三角形绕直线x=e旋转所得的圆锥体体积为 V
1
=πe
2
(1/3)=πe
2
/3, 或V
1
=∫
0
e
2π(e一x)|y|dx=[*], 或 V
1
=∫
0
1
π(e—x)
2
dy=∫
0
1
(e—ey)
2
dy=πe
2
∫
0
1
(1一y)
2
dy=[*]. 曲线y=lnx与x轴及直线x=e所围成的图形绕直线x=e旋转所得的旋转体体积为 V
2
=∫
0
1
π(e—x)
2
dy=∫
0
1
π(e—e
y
)
2
dy=[*] 或 V
2
=∫
1
e
π(e—x)lnxdx=[*]. 因此所求旋转体体积为 V=V
1
-V
2
=π(5e
2
一12e+3)/6.
解析
转载请注明原文地址:https://kaotiyun.com/show/EC04777K
0
考研数学一
相关试题推荐
已知以2π为周期的周期函数f(x)在(-∞,+∞)上有二阶导数,且f(0)=0.设F(x)=(sinx-1)2f(x),证明=x0∈(2π,)使得F″(x0)=0.
若级数绝对收敛,试证绝对收敛,收敛.
计算(x2+y2)dxdydz,其中Ω是由x2+y2=z2与z=a(a>0)所围成的区域.
设α1,α2,…,αM,β1,β2,…,βn线性无关,而向量组α1,α2,…,αm,γ线性相关。证明:向量γ可由向量组α1,α2,…,αm,β1,β2,…,βn线性表示.
判别级数(p>0)的收敛性(包括绝对收敛或条件收敛).
求曲线y=3-|x2-1|与x轴围成的封闭区域绕直线y=3旋转所得的旋转体的体积.
设a0=1,a1=-2,a2=7/2an+1=-(1+)an(n≥2).证明:当|x|<1时,幂级数anxn收敛,并求其和函数S(x).
(2013年)设直线L过A(1,0,0),B(0,1,1)两点,将L绕z轴旋转一周得到曲面∑.∑与平面z=0,z=2所围成的立体为Ω.求Ω的形心坐标.
[2013年]设随机变量Y服从参数为1的指数分布,a为常数且大于零,则P(Y≤a+1|Y>a)=______.
[2013年]设X1,X2,X3是随机变量,且X1~N(0,1),X2~N(0,22),X3~N(5,32),pi=P{一2≤Xi≤2}(i=1,2,3),则().
随机试题
对诊断困难的急性化脓性腹膜炎病例,应做哪项检查以协助明确诊断
设备监理工程师在设备制造过程中进行投资控制的主要任务是( )。
代理人应当在代理权限范围内( )意思表示。
下列选项中,不属于投资市场主体的是()。
流动资金循环贷款的管理原则是()。
关于“敬业”,正确的说法是()。
完成以下数列:9654,4832,5945,7642,7963,8216,()。
2009年3月,李某申请承包甲村某块集体土地被准许。甲村村民张某对此持有异议,二人发生纠纷。后李某将争议提请有关机关处理。有关机关准许李某承包某块集体土地的行为属于()。
下列民事权利中,属于支配权的是
Cultural(different)______oftencausemisunderstanding.
最新回复
(
0
)