首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2. 求矩阵A的特征值;
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2. 求矩阵A的特征值;
admin
2018-05-21
73
问题
设A是三阶矩阵,α
1
,α
2
,α
3
为三个三维线性无关的列向量,且满足Aα
1
=α
2
+α
3
,Aα
2
=α
1
+α
3
,Aα
3
=α
1
+α
2
.
求矩阵A的特征值;
选项
答案
因为α
1
,α
2
,α
3
线性无关,所以α
1
+α
2
+α
3
≠0, 由A(α
1
+α
2
+α
3
)=2(α
1
+α
2
+α
3
),得A的一个特征值为λ
1
=2; 又由A(α
1
-α
2
)=-(α
1
-α
2
),A(α
2
-α
3
)=-(α
2
-α
3
),得A的另一个特征值为λ
2
=-1. 因为α
1
,α
2
,α
3
线性无关,所以α
1
-α
2
与α
2
-α
3
也线性无关,所以λ
2
=-1为矩阵A的二重特征值,即A的特征值为2,-1,-1.
解析
转载请注明原文地址:https://kaotiyun.com/show/zpr4777K
0
考研数学一
相关试题推荐
线性方程组Ax=b经初等变换其增广矩阵化为方程组无解,则a=()
设A是三阶矩阵,其特征值是1,3,一2,相应的特征向量依次为α1,α2,α3,若P=(α1,2α3,一α2),则P-1AP=()
设物体在高空中垂直下落,初速度为零,下落过程中所受空气阻力与下落速度的平方成正比,阻力系数k>0。证明下落速度不会超过
已知三阶矩阵A的特征值为0,±1,则下列结论中不正确的是()
(1)设f(x)在(一∞,+∞)上连续,证明f(x)是以l(>0)为周期的周期函数的充要条件是对任意a∈(一∞,+∞)恒有∫aa+lf(x)dx=∫0lf(x)dx.(2)计算
设函数f(x)在[0,+∞)内二阶可导,且f(0)=f’(0)=0,并当x>0时满足xf"(x)+3x[f’(x)]2≤1一e—x.证明当x>0时,f(x)<x2.
设y=ex(asinx+bcosx)(a,b为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为_________.
设函数f(u)可导,y=f(x2)当自变量x在x=一1处取得增量△x=一0.1时,相应的函数增量△y的线性主部为0.1,则f’(1)等于()
已知实二次型f(x1,x2,x3)=xTAx的矩阵A满足且ξ1=(1,2,1)T,ξ2=(1,一1,1)T是齐次线性方程组Ax=0的一个基础解系.(Ⅰ)用正交变换将二次型f化为标准形,写出所用的正交变换和所得的标准形;(Ⅱ)求出该二次型.
随机试题
慢性肾衰竭后期的患者,一旦出现下列哪种情况提示病情严重
天南星善于治疗风痰眩晕证,是取其何功效
消火栓系统、自动喷水灭火系统管路的无缝钢管采用( )连接。
2010年4月18日,甲公司与乙公司签订了一份供货合同。甲公司为买方,乙公司为卖方,合同中约定由乙公司将甲公司所购买的部分货物直接运至丙公司。则下列表述错误的是()。
关于现阶段中国劳资冲突的构成特点,表述错误的是()。
近年来,消费者对美妆护肤方面的需求进一步提升,美容小家电凭借其小巧轻便、使用时间灵活、做工精细、物美价廉深受爱美人群的青睐。G公司在国内最早推出美容小家电产品,目前该公司已建成覆盖全国的营销网络,包括电商销售平台、数以千计的超市专卖柜和实体店以及十几个仓储
请说出思想品德课程的基本性质、主要特点和基本理念。
AsItypetheselines,mydaughter,Harriet,whois14,isonheriPhoneskippingamongnofewerthaneightsocialmediasites.
Ofallthefoodsweknow,fruitisoneofthemosthealthful.Itisalsooneofthemosttastyfoods.Almosteveryoneenjoysfru
AlthoughHeroniswellknownforthebroadcomedyinthemoviesshehasdirectedpreviously,hernewfilmislessinclinedto__
最新回复
(
0
)