首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2. 求矩阵A的特征值;
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2. 求矩阵A的特征值;
admin
2018-05-21
31
问题
设A是三阶矩阵,α
1
,α
2
,α
3
为三个三维线性无关的列向量,且满足Aα
1
=α
2
+α
3
,Aα
2
=α
1
+α
3
,Aα
3
=α
1
+α
2
.
求矩阵A的特征值;
选项
答案
因为α
1
,α
2
,α
3
线性无关,所以α
1
+α
2
+α
3
≠0, 由A(α
1
+α
2
+α
3
)=2(α
1
+α
2
+α
3
),得A的一个特征值为λ
1
=2; 又由A(α
1
-α
2
)=-(α
1
-α
2
),A(α
2
-α
3
)=-(α
2
-α
3
),得A的另一个特征值为λ
2
=-1. 因为α
1
,α
2
,α
3
线性无关,所以α
1
-α
2
与α
2
-α
3
也线性无关,所以λ
2
=-1为矩阵A的二重特征值,即A的特征值为2,-1,-1.
解析
转载请注明原文地址:https://kaotiyun.com/show/zpr4777K
0
考研数学一
相关试题推荐
已知α=(a,1,1)T是矩阵的逆矩阵的特征向量,那么a=________。
设函数f(x)在[a,b]上连续,在(a,b)内可导且f(A)≠f(B),试证明存在η,ξ∈(a,b),使得
设矩阵Am×n经过若干次初等行变换后得到B,现有4个结论,其中正确的是()①A的行向量均可由B的行向量线性表示;②A的列向量均可由B的列向量线性表示;③B的行向量均可由A的行向量线性表示;④B的列向量均可由A的列向量线性表示。
设f(x)是连续函数.(1)利用定义证明函数F(x)=∫0xf(t)dt可导,且F’(x)=f(x).(2)当f(x)是以2为周期的周期函数时,证明函数G(x)=2∫0xf(t)dt一x∫02f(t)dt也是以2为周期的周期函数.
已知向量a,b相互平行但方向相反,且|a|>|b|>0,则必有()
已知a,b为非零向量,且a⊥b,则必有()
设函数f(u)可导,y=f(x2)当自变量x在x=一1处取得增量△x=一0.1时,相应的函数增量△y的线性主部为0.1,则f’(1)等于()
设四维向量组α1=(1,1,4,2)T,α2=(1,一1,一2,6)T,α3=(一3,一1,a,一9)T,β=(1,3,10,a+b)T.问(Ⅰ)当a,b取何值时,β不能由α1,α2,α3线性表出;(Ⅱ)当a,b取何值时,β能由α1,α2,α3线性表出
设A为3阶实对称矩阵,若存在正交矩阵Q,使得QTAQ=,又已知A的伴随矩阵A*有一个特征值为λ=1,相应的特征向量为α=(1,1,1)T.求二次型xT(A*)-1x的表达式,并确定其正负惯性指数.
随机试题
表示黏性土处于可塑状态的含水量变化范围为()。
安全气囊系统按总体结构可分为机械式和_______。
妊娠期母体生理变化最大最明显的是
A、回忆偏倚B、失访偏倚C、入院率偏倚D、检出征候偏倚E、现患病例-新病例偏倚在病例对照研究中,若选用现患病例作为研究对象,最常见的偏倚是
止水铅直交叉常用()。
[背景资料]某装饰公司承接了寒冷地区某商场的室内、外装饰工程。其中,室内地面采用地面砖镶贴,吊顶工程部分采用木龙骨,室外部分墙面为铝板幕墙,采用进口硅酮结构密封胶、铝塑复合板,其余外墙为加气混凝土外镶贴陶瓷砖。施工过程中,发生如下事件:事件
关于冯.诺依曼计算机,下列说法正确的是()。
中国的小说源远流长,小说在唐代叫作________。
在VisualFoxPro中,假设当前没有打开的数据库,在命令窗口输入MODIDFYDATEBASE命令,系统产生的结果是()。
A、Itwouldn’tstart.B、Itranoutofgas.C、Itwasbroken.D、Itwasmissing.A问题为“男士的车出了什么问题?”根据男士的答语“Itwouldn’tstartthismor
最新回复
(
0
)