首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n维列向量α1,α2,…,αn-1,β线性无关,且与非零向量β1,β2都正交.证明β1,β2线性相关,α1,α2,…,αn-1,β1线性无关.
设n维列向量α1,α2,…,αn-1,β线性无关,且与非零向量β1,β2都正交.证明β1,β2线性相关,α1,α2,…,αn-1,β1线性无关.
admin
2016-10-26
62
问题
设n维列向量α
1
,α
2
,…,α
n-1
,β线性无关,且与非零向量β
1
,β
2
都正交.证明β
1
,β
2
线性相关,α
1
,α
2
,…,α
n-1
,β
1
线性无关.
选项
答案
用α
1
,α
2
,…,α
n-1
构造(n一1)×n矩阵:A=[*]因为β
1
与每个α
i
都正交,有α
i
T
β
1
=0,进而Aβ
1
=0,即β
1
是齐次方程组Ax=0的非零解.同理β
2
也是Ax=0的解. 又因r(A)=r(α
1
,α
2
,…,α
n-1
)=n一1,齐次方程组Ax=0的基础解系仅由n—r(A)=1个解向量构成,从而β
1
,β
2
线性相关.若 k
1
α
1
+k
2
α
2
+…+k
n-1
α
n-1
+lβ
1
=0 (*) 那么,用β
1
作内积,有k
1
(β
1
,α
1
)+k
2
(β
1
,α
2
)+…+k
n-11
(β
1
,α
n-1
)+l(β
1
,β
1
)=0. 因为(β
1
,α
i
)=0 (i=1,2,…,n一1),及‖β
1
‖≠0,有l(β
1
,β
1
)=l‖β
1
‖
2
=0, 得到l=0.将l=0代入(*)式,有 k
1
α
1
+k
2
α
2
+…+k
n-1
α
n-1
=0. 由于α
1
,α
2
,…,α
n-1
线性无关,得k
1
=k
2
=…=k
n-1
=0,所以(*)中组合系数必全是零,即α
1
,α
2
,…,α
n-1
,β
1
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/ELu4777K
0
考研数学一
相关试题推荐
[*]
1
商店收进甲厂生产的产品30箱,乙厂生产的同种产品20箱,甲厂产品每箱装100个,废品率为0.06,乙厂产品每箱120个,废品率为0.05.若将所有产品开箱混装,任取一个其为废品的概率
设(X1,X2,…,Xn)(n≥2)为标准正态总体,X的简单随机样本,则().
设随机变量X和Y的联合分布是正方形G={(x,y):1≤x≤3,1≤y≤3}上的均匀分布,试求随机变量U=|X—Y|的概率密度p(u).
(1998年试题,九)设y=f(x)是区间[0,1]上的任一非负连续函数.试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的曲边梯形面积;
行列式
设f(x,y)是连续函数,则
设f(x)为连续函数,且且当x→0时,与bxk为等价无穷小,其中常数b≠0,k为某正整数,求k与b的值及f(0),证明f(x)在x=0处可导并求f’(0).
随机试题
改革是一项崭新的事业,是一个大试验。邓小平提出判断改革和各方面工作是非得失的标准是()
痛风病人不宜食用果糖的原因是()。
可引起机体发生哮喘等变态反应性疾患的室内空气污染物最可能是
我国推荐的每日膳食中蛋白质供给量(极轻体力劳动)成年男子、女子分别为
雌激素的功能有
股票基金减少了基金经理投资的委托代理风险。()
国别价值和()存在“比较差异”,是国际价值规律发挥作用的一种表现形式。
“富贵不能淫,贫贱不能移,威武不能屈”反映的是人们的()修养。
班级发展的高级阶段是()。
Sincetheearly1930s,SwissbankshadpridedthemselvesontheirsystemofbankingsecrecyandnumberedaccountsOverthey
最新回复
(
0
)