首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次线性方程组Ax=0,其中A为m×n矩阵,且R(A)=n一3.v1,v2,v3是方程组的三个线性无关的解向量,则( )不是Ax=0的基础解系.
设齐次线性方程组Ax=0,其中A为m×n矩阵,且R(A)=n一3.v1,v2,v3是方程组的三个线性无关的解向量,则( )不是Ax=0的基础解系.
admin
2020-09-25
111
问题
设齐次线性方程组Ax=0,其中A为m×n矩阵,且R(A)=n一3.v
1
,v
2
,v
3
是方程组的三个线性无关的解向量,则( )不是Ax=0的基础解系.
选项
A、v
1
,v
2
,v
3
B、v
1
+v
2
,2v
2
+3v
3
,3v
3
+v
1
C、v
1
,v
1
+v
2
,v
1
+v
2
+v
3
D、v
3
一v
2
一v
1
,v
3
+v
2
+v
1
,一2v
3
答案
D
解析
R(A)=n一3,故基础解系中解向量个数为3,且线性无关.选项D中,由(v
3
一v
2
一v
1
)+(v
3
+v
2
+v
1
)+(一2v
3
)=0,知v
3
一v
2
一v
1
,v
3
+v
2
+v
1
,一2v
3
线性相关.选项A,B,C中的向量组线性无关,且为三个解向量,故为基础解系.故选D.
转载请注明原文地址:https://kaotiyun.com/show/EPx4777K
0
考研数学三
相关试题推荐
设u=e—xsin的值为_________.
设A=,B是3阶非零矩阵,且AB=O,则Ax=0的通解是__________.
设行向量组(2,1,1,1),(2,1,a,a),(3,2,1,a),(4,3,2,1)线性相关,且a≠1,则a=___________.
已知α1,α2,α3线性无关,α1+α2,aα2—α3,α1—α2+α3线性相关,则a=___________.
已知矩阵,若线性方程组Ax=b有无穷多解,则a=________.
设A,B为随机事件,则P(A)=P(B)充分必要条件是()
设A是三阶实对称矩阵,E三阶单位矩阵,若A2+A=2E,且|A|=4,则二次型xTAx的规范形为()
(2013年)设函数f(x)在[0,+∞)上可导,f(0)=0且=2,证明:(I)存在a>0,使得f(a)=1;(Ⅱ)对(I)中的a,存在ξ∈(0,a),使得f’(ξ)=。
设A、B分别为m、n阶正定矩阵,试判定分块矩阵C=是否正定矩阵.
已知线性方程组(1)a,b为何值时,方程组有解?(2)在方程组有解时,求出方程组的导出组的一个基础解系,并用它表示方程组的全部解.
随机试题
黄芩、黄连、黄柏的共同作用是
对行政机关工作人员处分的各类为:警告、记过、记大过、()、撤职、开除。
按职能划分部门适用于()
患者车祸伤,来院时已出现神志模糊,血压低,心率120次/分。首先应当
预期要发生不良后果时的复杂情绪反应为自我中心性加强为
阴虚风动的病因是
A.25周B.27周C.32周D.35周E.40周羊水内出现肺表面活性物质的时间是
根据乳腺癌淋巴转移的主要途径,护理评估应重点关注的部位是
对作业技术活动结果不合格的处理,要做到()。
A、Hewillbesentbackevenifheisunfittostandtrial.B、HewillremaininSouthAfricaformedicaltreatment.C、Hewillsta
最新回复
(
0
)