首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次线性方程组Ax=0,其中A为m×n矩阵,且R(A)=n一3.v1,v2,v3是方程组的三个线性无关的解向量,则( )不是Ax=0的基础解系.
设齐次线性方程组Ax=0,其中A为m×n矩阵,且R(A)=n一3.v1,v2,v3是方程组的三个线性无关的解向量,则( )不是Ax=0的基础解系.
admin
2020-09-25
55
问题
设齐次线性方程组Ax=0,其中A为m×n矩阵,且R(A)=n一3.v
1
,v
2
,v
3
是方程组的三个线性无关的解向量,则( )不是Ax=0的基础解系.
选项
A、v
1
,v
2
,v
3
B、v
1
+v
2
,2v
2
+3v
3
,3v
3
+v
1
C、v
1
,v
1
+v
2
,v
1
+v
2
+v
3
D、v
3
一v
2
一v
1
,v
3
+v
2
+v
1
,一2v
3
答案
D
解析
R(A)=n一3,故基础解系中解向量个数为3,且线性无关.选项D中,由(v
3
一v
2
一v
1
)+(v
3
+v
2
+v
1
)+(一2v
3
)=0,知v
3
一v
2
一v
1
,v
3
+v
2
+v
1
,一2v
3
线性相关.选项A,B,C中的向量组线性无关,且为三个解向量,故为基础解系.故选D.
转载请注明原文地址:https://kaotiyun.com/show/EPx4777K
0
考研数学三
相关试题推荐
一批产品中一等品、二等品、三等品的比例分别为60%,30%,10%,从中任取一件结果不是三等品,则取到一等品的概率为________.
已知y1=e3x—xe2x,y2=ex一xe2x,y3=一xe2x是某二阶常系数非齐次线性微分方程的3个解,则该方程的通解为y=________。
设三阶行列式D3的第二行元素分别为1、一2、3,对应的代数余子式分别为一3、2、1,则D3=________。
设α=(1,-1,a)T,β=(1,a,2)T,A=E+αβT,且λ=3是矩阵A的特征值,则矩阵A属于特征值λ=3的特征向量是_________
设A,B均为n阶矩阵,|A|=2,|B|=-3,则|2A*B-1|=_______.
设A是秩为3的5×4矩阵,α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,如果α1+α2+2α3=(2,0,0,0)T,3α1+α2=(2,4,6,8)T,则方程组Ax=b的通解是___________。
(2012年)已知函数f(x)满足方程f’’(x)+f’(x)一2f(x)=0及f’’(x)+f(x)=2ex.(Ⅰ)求f(x)的表达式;(Ⅱ)求曲线y=f(x2)∫0x(一t2)出的拐点.
设向量α1,α2,…,αt是齐次线性方程组AX=0的一个基础解系,向量β不是方程组AX=0的解,即Aβ≠0.试证明;向量组β,β+α1,…,β+αt线性无关.
设向量α1,α2,…,αt是齐次线性方程组.AX=0的一个基础解系,向量β不是AX=0的解,即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
随机试题
A.维生素B6B.维生素KC.维生素CD.维生素B1参与氨基转移酶辅酶的是
A.pH7.35,PCO265mmHg,BE+8B.pH7.20,PCO225mmHg,BE-10C.pH7.50,PCO245mmHg,BE+8D.pH7.40,PCO240mmHg,BE-2E.
患者,女,23岁,风湿性心脏病心力衰竭,用地高辛及氢氯噻嗪治疗5d,气促加重,心电图示室性期前收缩二联律,下列治疗各项不正确的是
A.经皮肤感染B.经蜱叮咬感染C.经蚊叮咬感染D.经白蛉叮咬感染E.经口惑染某散养猪群,其中数头猪屠宰后见肌肉组织内有米粒或黄豆大小半透明囊泡,囊泡壁上有一个乳白色结节。该病原的感染途径是
QDII基金投资金融衍生品,在基金合同、招募说明书中特殊披露要求不包括()
对于以非现金资产清偿债务的债务重组,下列各项中,债权人应确认债务重组损失的是()。
现代学校教育制度改革的趋势有()①学前教育小学化②延长义务教育年限③普通教育和职业教育分化越来越明显④终身教育越来越受到重视⑤高等教育的类型日益多样化
Electronicmailhasbeeninwidespreaduseformorethanadecade,simplifyingtheflowofi-deas,connectingpeoplefromdistan
民间文学的研究方法主要有_______、_______、_______。
戊戌维新运动不是偶然的,它的发生有其深刻的历史背景,主要有()
最新回复
(
0
)