首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2013年)设函数f(x)在[0,+∞)上可导,f(0)=0且=2,证明: (I)存在a>0,使得f(a)=1; (Ⅱ)对(I)中的a,存在ξ∈(0,a),使得f’(ξ)=。
(2013年)设函数f(x)在[0,+∞)上可导,f(0)=0且=2,证明: (I)存在a>0,使得f(a)=1; (Ⅱ)对(I)中的a,存在ξ∈(0,a),使得f’(ξ)=。
admin
2019-03-19
73
问题
(2013年)设函数f(x)在[0,+∞)上可导,f(0)=0且
=2,证明:
(I)存在a>0,使得f(a)=1;
(Ⅱ)对(I)中的a,存在ξ∈(0,a),使得f’(ξ)=
。
选项
答案
(I)设F(x)=f(x)一1,x≥0,因为[*]所以存在X>0,当x>X时,f(x)>1。 令x
0
>X,则f(x
0
)>1,所以F(x
0
)>0。 又因为F(0)=一1<0,根据介值定理,存在a∈(0,x
0
)[*](0,+∞),使得F(a)=0,即f(a)=1。 (Ⅱ)函数在[0,a]上连续,在(0,a)内可导,由拉格朗日中值定理,存在ξ∈(0,a),使得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/QeP4777K
0
考研数学三
相关试题推荐
设函数f(u)在(0,+∞)内具有二阶导数,且满足等式(Ⅰ)验证f"(u)+=0;(Ⅱ)若f(1)=0,f’(1)=1,求函数f(u)的表达式。
设f(x)在[0,a]上有一阶连续导数,证明至少存在一点ξ∈[0,a],使得∫0af(x)dx=af(0)+
设函数z(x,y)由方程确定,其中F为可微函数,且F+’≠0,则
设A是n阶矩阵,若存在正整数后,使线性方程组Akx=0有解向量α,且Ak—1α≠0。证明:向量组α,Aα,…,Ak—1α是线性无关的。
设函数f(x),g(x)具有二阶导数,且g"(x)<0。若g(x0)=a是g(x)的极值,则f[g(x)]在x0取极大值的一个充分条件是()
设α1,α1,…,αm,β1,β2,…,αm,γ线性无关,而向量组α1,α2,…,αm,γ线性相关.证明:向量γ可由向量组α1,α2,…,αm,β1,β2,…,βn线性表示.
参数A取何值时,线性方程组有无数个解?求其通解.
设L:y=sinx(0≤x≤),由x=0,L及y=sinx围成面积S1(t);由y=sint,L及x=围成面积S2(t),其中0≤t≤.(1)t取何值时,S(t)=S1(t)+S2(t)取最小值?(2)t取何值时,S(t)=S1(t)+S2(t)取最大
已知二维随机变量(X,Y)的概率密度为(Ⅰ)试求(X,Y)的边缘概率密度fX(x),fY(y),并问X与Y是否独立;(Ⅱ)令Z=X—Y,求Z的分布函数FZ(y)(z)与概率密度fZ(y)(z)。
随机试题
有关主频的说法是__。
酚类药物的易氧化是由于结构中具有
管道安装完毕,应对管道系统进行压力试验,按试验的目的可分为( )。
按照施工质量事故的分类,下列属于严重施工质量事故的是()。
主体工程开工的必要条件包括()。
汇编语言和机器语言都属于低级语言,用它们编写的程序可以被计算机直接识别。()
用转账支票归还欠A公司货款50000元,会计人员编制的记账凭证为:借记应收账款50000元,贷记银行存款50000元,审核并已登记入账,该记账凭证()。
某一人有限责任公司2010年盈利100万元,其中,免税收入有8万元,不征税收入为2万元,2008年亏损120万元,2009年盈利80万元,假定该公司所得税税率为30%,则其2010年度应纳企业所得税税额为()万元。
Doyoustillrememberthechickenfarm______wevisitedthreemonthsago?
BilingualEducationI.Bilingualeducation—Bilingualeducationprovidesinstructioninboththestudents’nativelanguageandt
最新回复
(
0
)