首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组(Ⅰ)与向量组(Ⅱ),若(Ⅰ)可由(Ⅱ)线性表示,且r(Ⅰ)=r(Ⅱ)=r.证明:(Ⅰ)与(Ⅱ)等价.
已知向量组(Ⅰ)与向量组(Ⅱ),若(Ⅰ)可由(Ⅱ)线性表示,且r(Ⅰ)=r(Ⅱ)=r.证明:(Ⅰ)与(Ⅱ)等价.
admin
2021-07-27
28
问题
已知向量组(Ⅰ)与向量组(Ⅱ),若(Ⅰ)可由(Ⅱ)线性表示,且r(Ⅰ)=r(Ⅱ)=r.证明:(Ⅰ)与(Ⅱ)等价.
选项
答案
设(Ⅰ)的一个极大线性无关组为ξ
1
,ξ
2
,…,ξ
r
,(Ⅱ)的一个极大线性无关组为η
1
,η
2
,…,η
r
.因为(Ⅰ)可由(Ⅱ)线性表示,即ξ
1
,ξ
2
,…,ξ
r
可由η
1
,η
2
,…,η
r
线性表示。于是r(ξ
1
,ξ
2
,…,ξ
r
,η
1
,η
2
,…,η
r
)=r(η
1
,η
2
,…,η
r
)=r.又ξ
1
,ξ
2
,…,ξ
r
线性无关,则ξ
1
,ξ
2
,…,ξ
r
也可作为ξ
1
,ξ
2
,…,ξ
r
,η
1
,η
2
,…,η
r
的一个极大线性无关组,于是η
1
,η
2
,…,η
r
也可由ξ
1
,ξ
2
,…,ξ
r
线性表示,即(Ⅱ)也可由(Ⅰ)线性表示,得证.
解析
转载请注明原文地址:https://kaotiyun.com/show/EQy4777K
0
考研数学二
相关试题推荐
设A,B均是n阶实对称矩阵,则A,B合同的充分必要条件是()
过曲线y=χ2(χ≥0)上某点A作一切线,使之与曲线及χ轴围成图形面积为,求:(Ⅰ)切点A的坐标;(Ⅱ)过切点A的切线方程;(Ⅲ)由上述图形绕χ轴旋转的旋转体的体积.
设u=u(x,y)有二阶连续偏导数,证明:在极坐标变换x=rcosθ,y=rsinθ下有
A是4阶实对称矩阵,A2+2A=0,r(A)=3,则A相似于().
设函数f(x),g(x)均有二阶连续导数,满足f(0)>0,g(0)<0,且f’(0)=g’(0)=0,则函数z=f(x)g(y)在点(0,0)处取得极小值的一个充分条件是()。
设A,B均为n阶正定矩阵,下列各矩阵中不一定是正定矩阵的是()
如图,曲线段的方程为y=f(x),函数f(x)在区间[0,a]上有连续的导数,则定积∫0axf’(x)dx等于()
设n阶矩阵A的伴随矩阵为A*,证明:|A*|=|A|n一1。
设随机变量X和Y相互独立,且都服从标准正态分布N(0,1),求Z=(X+Y)2的概率密度fZ(Z).
过设曲线=1(0<a<4)与χ轴、y轴所围成的图形绕χ轴旋转所得立体体积为V1(a),绕y轴旋转所得立体体积为V2(a),问a为何值时,V1(a)+V2(a)最大,并求最大值.
随机试题
描述正态分布资料集中趋势的指标是
人患乙型脑炎时病毒主要侵犯
下列选项属于骨折晚期并发症的是
对烤瓷合金及瓷粉的要求中,错误的是
对于销售方按销售合同、协议规定已确认销售(如已收到货款等),而尚未发运给购货方的商品,应作为()的存货。
某基金的业绩比较基准为中证全债指数,则以下关于该基金的表述错误的是()。[2015年12月真题]
自20世纪50年代,荷兰的兰斯塔德地区经过多次空间规划,形成城市在外、郊区在内的空间特征。该区中间是一个接近3000平方千米的“绿心”——乡村地带;四个核心城市和其他城镇呈环状分布在“绿心”的周围,城镇之间设置不可侵占的绿地。四个核心城市各具特殊职能,各城
2019年国务院政府工作报告指出,促进区域协调发展。优化区域发展格局。制定西部开发开放新的政策措施,西部地区企业所得税优惠等政策到期后不再继续执行。()
12,15,15,24,6,()
Washington:TheBushadministrationhas【L1】______forthefirsttimethatitmaybewillingto【L2】______amultinationalforcein
最新回复
(
0
)