首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有两个n维向量组(I)α1,α2,…,αs,(Ⅱ)β1,β2,…,βs,若存在两组不全为零的数k1,k2,…,ks,λ1,λ2,…,λs,使(k1+λ1)α1+(k2+λ2)α2+…+(ks+λs)αs+(k1—λ1)β1+…+(ks一λs)βs=0,则
设有两个n维向量组(I)α1,α2,…,αs,(Ⅱ)β1,β2,…,βs,若存在两组不全为零的数k1,k2,…,ks,λ1,λ2,…,λs,使(k1+λ1)α1+(k2+λ2)α2+…+(ks+λs)αs+(k1—λ1)β1+…+(ks一λs)βs=0,则
admin
2019-08-12
89
问题
设有两个n维向量组(I)α
1
,α
2
,…,α
s
,(Ⅱ)β
1
,β
2
,…,β
s
,若存在两组不全为零的数k
1
,k
2
,…,k
s
,λ
1
,λ
2
,…,λ
s
,使(k
1
+λ
1
)α
1
+(k
2
+λ
2
)α
2
+…+(k
s
+λ
s
)α
s
+(k
1
—λ
1
)β
1
+…+(k
s
一λ
s
)β
s
=0,则 ( )
选项
A、α
1
+β
1
,…,α
s
+β
s
,α
1
-β
1
,…,α
s
一β
s
线性相关
B、α
1
,α
s
及β
1
,…,β
s
均线性无关
C、α
1
,…α
s
及β
1
,…,β
s
均线性相关
D、α
1
+β
1
,…,α
s
+β
s
,α
1
-β
1
,…,α
s
一β
s
线性无关
答案
A
解析
存在不全为0的k
1
,k
2
,…,k
s
,λ
1
,λ
2
,…,λ
s
,使得
(k
1
+λ
1
)α
1
+(k
2
+λ
2
)α
2
+…+(k
s
+λ
s
)α
s
+(k
1
一λ
1
)β
1
+(k
2
-λ
2
)β
2
+…+(k
s
一λ
s
)β
s
=0,
整理得
k
1
(α
1
+β
1
)+k
2
(α
2
+β
2
)+…+k
s
(α
s
+β
s
)+λ
1
(α
1
一β
1
)+λ
2
(α
2
一β
2
)+…+λ
s
(α
s
一β
s
)=0.从而得α
1
+β
1
,…,α
s
+β
s
,α
1
一β
1
,…,α
s
一β
s
线性相关.
转载请注明原文地址:https://kaotiyun.com/show/YuN4777K
0
考研数学二
相关试题推荐
(00年)设函数f(x),g(x)是大于零的可导函数,且f’(x)g(x)一f(x)g’(x)<0,则当a<x<b时有
(96年)设函数f(x)=(1)写出f(x)的反函数g(x)的表达式;(2)g(x)是否有间断点、不可导点,若有,指出这些点.
(18年)设平面区域D由曲线,(0≤t≤2π)与x轴围成,计算二重积分(x+2y)dxdy.
(1999年)设向量组α1=[1,1,1,3]T,α2=[-1,-3,5,1]T,α3=[3,2,-1,p+2]T,α4=[-2.-6,10,p]T.(1)p为何值时,该向量组线性无关?并在此时将向量α=[4,1,6,10]T用α1,α2,α3,α4线性
(2002年)已知A,B为3阶矩阵,且满足2A-1B=B-4E,其中E是3阶单位矩阵.(1)证明:矩阵A-2E可逆;(2)若B=,求矩阵A.
(2006年)设矩阵A=,E为2阶单位矩阵,矩阵B满足BA=B+2E,则|B|=______.
(2005年)设α1,α2,α3均为3维列向量,记矩阵A=(α1,α2,α3),B=(α1+α2+α3,α1+2α2+4α3,α1+3α2+9α3).如果|A|=1,那么|B|=_______.
若向量组α1=线性相关,则λ=______.
若向量组α1,α2,α3线性无关,向量组α1,α2,α4线性相关,则
设A=(aij)3×3是实正交矩阵,且a11=1。b=(1,0,0)T,则线性方程组Ax=b的解是______.
随机试题
反常性碱性尿
在X线摄影中,使用对比剂可以增加组织间的对比,有助于形成影像。肝肾功能严重受损不能进行静脉尿路造影检查的原因不包括
氨基酸脱氨基可生成相应的α-酮酸,后者在体内参与合成
下列有关金融中介与金融市场功能的关系的表述,传统理论认为()。
我国最早修筑长城的是(),大约始于公元前7世纪中叶。
人体的免疫功能,可清除自身的损伤细胞,在这一生理过程中,损伤细胞属于()。
君子博学而日参省乎己,_______。(《荀子.劝学》)
公安部不需要接受中央政法委员会的领导,但是各级地方公安机关要接受各级党委的政法委员会的领导。()
交管局要求司机在通过某特定路段时,在白天也要像晚上一样使用大灯,结果发现这条路上的年事故发生率比从前降低了15%。他们得出结论说:如果在全市范围内都推行该项规定会同样地降低事故发生率。以下哪项如果为真,最能支持上述论证的结论?
Tobefrank,IshouldsayTom______(与其说是个摄影师,不如说是个画家).
最新回复
(
0
)