首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)内可导,且 f(a)<0,f(b)<0,f(c)>0(a<c<b),证明:在(a,b)内至少有一点ξ,使得f(ξ)+f’(ξ)=0.
设f(x)在[a,b]上连续,在(a,b)内可导,且 f(a)<0,f(b)<0,f(c)>0(a<c<b),证明:在(a,b)内至少有一点ξ,使得f(ξ)+f’(ξ)=0.
admin
2022-06-04
31
问题
设f(x)在[a,b]上连续,在(a,b)内可导,且 f(a)<0,f(b)<0,f(c)>0(a<c<b),证明:在(a,b)内至少有一点ξ,使得f(ξ)+f’(ξ)=0.
选项
答案
令F(x)=e
x
f(x)在[a,b]上连续,且F(A)<0,F(B)<0,F(C)>0.在区间[a,c]与[c,b]内使用零点定理,得存在ξ
1
∈(a,c),ξ
2
∈(c,b)使F(ξ
1
)=F(ξ
2
)=0. 又F(x)=e
x
f(x)在[ξ
1
,ξ
2
]上连续,在(ξ
1
,ξ
2
)内可导,且F(ξ
1
)=F(ξ
2
)=0.故必存在一点 ξ∈(ξ
1
,ξ
2
)[*](a,b)使F’(ξ)=0.而由 F’(x)=e
x
f(x)+e
x
f’(x)=e
x
[f(x)+f’(x)] 得 F’(ξ)=e
ξ
[f(ξ)+f’(ξ)]=0 所以存在ξ∈(a,b),使得f(ξ)+f’(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/EXR4777K
0
考研数学三
相关试题推荐
设f(x)在[—2,2]上具有连续的导数,且f(0)=0,证明:级数绝对收敛.
对于一切实数t,函数f(t)为连续的正函数且可导,又∫(—t)=f(t),设证明g’(x)单调增加;
设有级数证明此级数的和函数y(x)满足微分方程y’’—y=—l;
设A是n阶正定矩阵,证明:|E+A|>1.
设A是n阶矩阵,λ是A的特征值,其对应的特征向量为X,证明:λ2是A2的特征值,X为特征向量.若A2有特征值λ,其对应的特征向量为X,X是否一定为A的特征向量?说明理由.
aibi≠0,求A的全部特征值,并证明A可以对角化.
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
随机试题
深冷装置()是造成燃料气压缩机出口压力高的原因之一。
处理人与人之间的关系,表明了管理的【】
栓剂指药物与适宜基质制成的具有一定形状的供人体腔道内给药的固体制剂。关于直肠给药栓剂的正确表述有
对长14~21m的静压桩,终压力按设计承载力的()倍取值。
下列大气污染物中,不属于《生活垃圾焚烧污染控制标准》,规定的控制项目是()。
由于各种报表间存在着密切的数据间的逻辑关系,各种报表数据的采集和运算要用到大量的公式,这些公式主要包括计算公式、审核公式、舍位平衡公式等。 ( )
下列根据实验操作和现象所得出的结论正确的是()。
中央特科的主要任务是()。
设f(x,y)在(0,0)的某邻域内连续,且满足,则f(x,y)在(0,0)处().
阅读下列说明,回答问题1至问题3,将解答填入答题纸的对应栏内。【说明】某企业为防止自身信息资源的非授权访问,建立了如图4-1所示的访问控制系统。该系统提供的主要安全机制包括:(1)认证:管理企业的合法用户,验证用户
最新回复
(
0
)