首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A的伴随矩阵A*≠0,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系( )
设n阶矩阵A的伴随矩阵A*≠0,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系( )
admin
2018-02-07
37
问题
设n阶矩阵A的伴随矩阵A
*
≠0,若ξ
1
,ξ
2
,ξ
3
,ξ
4
是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系( )
选项
A、不存在。
B、仅含一个非零解向量。
C、含有两个线性无关的解向量。
D、含有三个线性无关的解向量。
答案
B
解析
由A
*
≠0可知,A
*
中至少有一个非零元素,由伴随矩阵的定义可得矩阵A中至少有一个n—l阶子式不为零,再由矩阵秩的定义有r(A)≥n—1。又因Ax=b有互不相等的解知,即其解存在且不唯一,故有r(A)<n,从而r(A)=n一1。因此对应的齐次线性方程组的基础解系仅含一个非零解向量,故选B。
转载请注明原文地址:https://kaotiyun.com/show/EXk4777K
0
考研数学二
相关试题推荐
设F(x,y)是一个二维随机向量(X,Y)的分布函数,x1
设A,B均为n阶矩阵,若E-AB可逆,证明E-BA可逆.
求微分方程(y+x2e-x)dx-xdy=0的通解y.
若f(1)=0,f’(1)=1,求函数f(u)的表达式.
已知,二次型f(x1,x2,x3)=xT(ATA)x的秩为2,(1)求实数a的值;(2)求正交变换x=Qy将f化为标准形.
设三阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(-1,-1,1)T,α2=(1,-2,-1)T.求矩阵A.
设二次型f(x1,x2,x3)=xTAX=ax12+2x22-2x32+2bx1x3(6>o),其中二次型的矩阵A的特征值之和为1,特征值之积为-12.利用正交变换将二次型,化为标准形,并写出所用的正交变换和对应的正交矩阵.
已知二次型f(x1,x2,x3)=(1-a)x22+(1-a)x22+2x32+2(1+a)x1x2的秩为2.求正交变换x=Qy,把f(x1,x2,x3)化成标准形;
二次型f(x1,x2,x3)=(x1+x2)2+(x2-x3)2+(x3+x1)2。的秩为_________.
随机试题
现代社会提倡节约,包括节约()。
78岁,男性,平日身体无任何不适,体检时B超发现左肾有直径约4cm的占位性病变。切除肿物后,病理检查肉眼见:肿瘤界限清楚,无包膜,直径5cm,切面褐色;显微镜下:瘤细胞圆形或多边形,细胞质富含嗜酸性颗粒,核圆,核仁居中,呈巢状和腺泡状排列。其诊断最可能为
患者,女性,39岁,车祸伤及下腹部,怀疑膀胱破裂,在现场简便的判断方法是
下列属于理学检查的是
下列各项中,可用于确定所提供劳务完工进度的方法有()。
“群众家门口的事群众说了算”,北京某街道办事处开发了一款手机小程序,居民有什么意见建议,都可以在上面畅所欲言,相关部门可以通过大数据对居民意见实时查看和归类,为街道规划设计和管理提供依据。该街道办事处的做法()。
假朋友
数据库管理系统采用三级加锁协议来防止并发操作可能导致的数据错误。在三级加锁协议中,1级加锁协议能够解决的问题是
Whatdoesthemanmean?
Certainplantseedsareabletoremain______foryears,appearinglifelesswheninfacttheyaremerelyinactive.
最新回复
(
0
)