首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A=(α1,α2,α3,α4),非齐次线性方程组Ax=b的通解为(1,1,1,1)T+k1(1,0,2,1)T+k2(2,1,1,-1)T. 令C=(α1,α2,α3,α4,b),求Cx=b的通解.
已知A=(α1,α2,α3,α4),非齐次线性方程组Ax=b的通解为(1,1,1,1)T+k1(1,0,2,1)T+k2(2,1,1,-1)T. 令C=(α1,α2,α3,α4,b),求Cx=b的通解.
admin
2019-08-27
29
问题
已知A=(α
1
,α
2
,α
3
,α
4
),非齐次线性方程组Ax=b的通解为(1,1,1,1)
T
+k
1
(1,0,2,1)
T
+k
2
(2,1,1,-1)
T
.
令C=(α
1
,α
2
,α
3
,α
4
,b),求Cx=b的通解.
选项
答案
与(Ⅰ)类似,先求Cx=0的基础解系. 由于C即为线性方程组Ax=b的增广矩阵,故R(C)=R(A)=2,可知Cx=0的基础解系中含有5-2=3个线性无关的解向量,为此,需要找出Cx=0的三个线性无关的解. 由于(1,0,2,1)
T
,(2,1,1,-1)
T
均为Ax=0的解,可知(1,0,2,1,0)
T
,(2,1,1-1,0)
T
均为Cx=0的解.而(1,1,1,1)
T
为Ax=b的解,可知α
1
+α
2
+α
3
+α
4
=b,也即α
1
+α
2
+α
3
+α
4
-b=0,故(1,1,1,1,-1)
T
也为Cx=0的解. 这样,我们就找到了Cx=0的三个解:(1,0,2,1,0)
T
,(2,1,1,-1,0)
T
,(1,1,1,1,-1)
T
,容易验证它们是线性无关的,故它们即为Cx=0的基础解系. 最后,易知(0,0,0,0,1)
T
为Cx=b的解,故Cx=b的通解为(0,0,0,0,1)
T
+k
1
(1,0,2,1,0)
T
+k
2
(2,1,1,-1,0)
T
+k
3
(1,1,1,1,-1)
T
,k
i
∈R,i=1,2,3.
解析
【思路探索】对于抽象型线性方程组,通常利用解的结构求解.
转载请注明原文地址:https://kaotiyun.com/show/EoS4777K
0
考研数学一
相关试题推荐
设f(x)在x=0处连续,且=2,则曲线f(x)在点(0,f(0))处的切线方程为______。
=__________.
过原点及点(6,一3,2)且与平面4x—y+2z=8垂直的平面方程为___________.
设X1,X2,…,Xn是取自总体X的一个简单随机样本,DX=σ2,是样本均值,则σ2的无偏估计量是
当级数()
设C为从A(0,0)到B(5,4)的直线段,则曲线积分∫C(2x﹢y)ds等于()
设二次型为f﹦x12﹢2x22﹢6x32﹢2x1x2﹢2x1x3﹢6x2x3。(I)用可逆线性变换化二次型为标准形,并求所用的变换矩阵;(Ⅱ)证明二次型对应的矩阵A为正定矩阵,并求可逆矩阵U,使得A﹦UTU。
设函数f(x)在[0,+∞)内可导,f(0)=1,且f’(x)+f(x)一∫0xf(t)dt=0·证明:当x≥0时,e-x≤f(x)≤1.
设随机变量X与Y相互独立,且X服从标准正态分布N(0,1),Y的概率分布为P{Y=0}=P{Y=1}=,记FZ(z)为随机变量Z=XY的分布函数,则函数FZ(z)的间断点个数为()
已知β1,β2是AX=b的两个不同的解,α1,α2是相应的齐次方程组AX=0的基础解系,k1,k2是任意常数,则AX=b的通解是()
随机试题
看板的种类有许多种,常见的形式有()
下列关于划拨建设用地使用权转让的条件,正确的是()。
在货币乘数不变的条件下,金融当局即可通过控制()来控制整个货币供给量。
甲供热公司将锅炉安装工程发包给资质符合要求的乙公司,下列对现场安全管理的做法中,错误的是()。
危险物品的生产、经营、储存单位以及矿山、建筑施工单位()。
某商品流通企业的物流部门只为本企业提供服务。随着物流业振兴规划的出台,企业的决策层对市场上现有的物流企业进行了调查分析,对本企业的资金运作、物流部门的员工及其技能、物流设备及其运转能力等内部条件进行了认真的分析研究,决定成立一个独立经营、自负盈亏的MK物流
一个测验或测量工具能够正确测量所要测量事物的属性或特征的程度被称为【】
小学四年级新上任的班主任刘老师经过一个月的观察,总结了班里每个学生的特长,并据此展开有针对性的教学,刘老师的做法体现了尊重个体身心发展的()。
用下列词语组成一段话。词语可颠倒顺序:公务员、政府、民生、民意、惠民、爱民、公仆、贪污、渎职、惩处。
在IEEE802.11b点对点模式中,唯一需要的无线设备是()。
最新回复
(
0
)