首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A=(α1,α2,α3,α4),非齐次线性方程组Ax=b的通解为(1,1,1,1)T+k1(1,0,2,1)T+k2(2,1,1,-1)T. 令C=(α1,α2,α3,α4,b),求Cx=b的通解.
已知A=(α1,α2,α3,α4),非齐次线性方程组Ax=b的通解为(1,1,1,1)T+k1(1,0,2,1)T+k2(2,1,1,-1)T. 令C=(α1,α2,α3,α4,b),求Cx=b的通解.
admin
2019-08-27
15
问题
已知A=(α
1
,α
2
,α
3
,α
4
),非齐次线性方程组Ax=b的通解为(1,1,1,1)
T
+k
1
(1,0,2,1)
T
+k
2
(2,1,1,-1)
T
.
令C=(α
1
,α
2
,α
3
,α
4
,b),求Cx=b的通解.
选项
答案
与(Ⅰ)类似,先求Cx=0的基础解系. 由于C即为线性方程组Ax=b的增广矩阵,故R(C)=R(A)=2,可知Cx=0的基础解系中含有5-2=3个线性无关的解向量,为此,需要找出Cx=0的三个线性无关的解. 由于(1,0,2,1)
T
,(2,1,1,-1)
T
均为Ax=0的解,可知(1,0,2,1,0)
T
,(2,1,1-1,0)
T
均为Cx=0的解.而(1,1,1,1)
T
为Ax=b的解,可知α
1
+α
2
+α
3
+α
4
=b,也即α
1
+α
2
+α
3
+α
4
-b=0,故(1,1,1,1,-1)
T
也为Cx=0的解. 这样,我们就找到了Cx=0的三个解:(1,0,2,1,0)
T
,(2,1,1,-1,0)
T
,(1,1,1,1,-1)
T
,容易验证它们是线性无关的,故它们即为Cx=0的基础解系. 最后,易知(0,0,0,0,1)
T
为Cx=b的解,故Cx=b的通解为(0,0,0,0,1)
T
+k
1
(1,0,2,1,0)
T
+k
2
(2,1,1,-1,0)
T
+k
3
(1,1,1,1,-1)
T
,k
i
∈R,i=1,2,3.
解析
【思路探索】对于抽象型线性方程组,通常利用解的结构求解.
转载请注明原文地址:https://kaotiyun.com/show/EoS4777K
0
考研数学一
相关试题推荐
设函数,则dz|(1,1)=_______.
=________.
已知总体X服从正态分布N(μ,σ2),X1,X2,…,X2n是取自总体X容量为2n的简单随机样本,当σ2未知时,Y=(X2i—X2i一1)2为σ2的无偏估计,则C=________,D(Y)=________.
设力f=2i-j+2k作用在一质点上,该质点从点M1(1,1,1)沿直线移动到点M2(2,2,2),则此力所做的功为()
交换积分次序∫0-1dy∫1-y2f(x,y)dx﹦______。
将n个观测数据相加时,首先对小数部分按“四舍五入”舍去小数位后化为整数.试利用中心极限定理估计:估计数据个数n满足何条件时,以不小于90%的概率,使舍位误差之和的绝对值小于10的数据个数n.
设f(x)=sinx,求f(x)的间断点及其分类.
利用中心极限定理证明:
设{μn},{cn}为正项数列,证明:若对一切正整数n满足cn一cn+1≥a(a>0),且也收敛·
设有多项式P(x)=x4+a3x3+a2x2+a1x+a0,又设x=x0是它的最大实根,则P’(x0)满足
随机试题
下列关于感觉器官特性的描述,错误的是
慢性浅表性胃炎与萎缩性胃炎的胃镜观察主要区别是
下列关于大型工程设备的采购招标交货期的说法,错误的是()。
结构的()是指在正常使用时,结构应具有良好的工作性能。
处于启动阶段的行业()。
印象形成
“班干部能做的班主任不做,学生能做的班干部不做”体现了班级管理的()
“搭便车者”是指不承担任何成本而消费或使用公共物品,或承担的成本少于其他应承担的公允份额的人。根据上述定义,下列现象与“搭便车者”有关的是:
Oneofthequestionscomingintofocusaswefacegrowingscarcityofresourcesintheworldishowtodividelimitedresources
Whichoneisthebenefitofyogainthementalaspect?
最新回复
(
0
)