首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知f(x)是周期为5的连续函数,它在x=0的某个邻域内满足关系式 f(1+sinx)-3f(1-sinx)=8x+a(x), 其中a(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的切线方程.
已知f(x)是周期为5的连续函数,它在x=0的某个邻域内满足关系式 f(1+sinx)-3f(1-sinx)=8x+a(x), 其中a(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的切线方程.
admin
2019-06-29
78
问题
已知f(x)是周期为5的连续函数,它在x=0的某个邻域内满足关系式
f(1+sinx)-3f(1-sinx)=8x+a(x),
其中a(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的切线方程.
选项
答案
题设要求切线方程,因此只需知道切点坐标及该点处切线斜率即可,由已知f(x)是周期为5的连续函数,因而求fˊ(6)及f(6)就等价于求fˊ(1)及f(1),由关系式 f(1+sinx)-3f(1-sinx)=8x+a(x), [*] 因此fˊ(1)=2,由周期性知fˊ(6)=fˊ(1)=2,f(6)=f(1)=0, 所以待求切线方程为y=2(x-6),即2x-y-12=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/EsN4777K
0
考研数学二
相关试题推荐
设A,B,C均为n阶矩阵,若AB=C,且B可逆,则()
设A为三阶矩阵,|A|=3,A*为A的伴随矩阵,若交换A的第1行与第2行得矩阵B,则|BA*|=________。
确定常数a,使向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(一2,a,4)T,β3=(一2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示。
设函数f(x)在闭区间[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,f’(0)=0,证明:在开区间(-1,1)内至少存在一点ξ,使f"’(ξ)=3。
已知函数f(x)在(0,+∞)内可导,f(x)>0,f(x)=1,且满足=e1/x,求f(x)。
设D是第一象限由曲线2xy=1,4xy=1与直线y=x,y=x围成的平面区域,函数f(x,y)在D上连续,则f(x,y)dxdy=()
飞机以匀速v沿y轴正向飞行,当飞机行至O时被发现,随即从x轴上(x0,0)处发射一枚导弹向飞机飞去(x0>0),若导弹方向始终指向飞机,且速度大小为2v.求导弹运行的轨迹满足的微分方程及初始条件;
确定积分的符号.
设线性方程组(1)求线性方程组(I)的通解;(2)m,n取何值时,方程组(I)与(Ⅱ)有公共非零解;(3)m,n取何值时,方程组(I)与(Ⅱ)同解.
微分方程=y(lny—lnx)的通解.
随机试题
桑塔纳汽车采暖量的强度是通过_______进行调节的。
简述支气管哮喘与心源性哮喘的鉴别诊断。
患者女性,41岁,诊断为“溃疡性结肠炎”收住入院,每天腹泻5~6次,有少量脓血便,对此类患者饮食护理应注意
青少年个体身心发展的顺序性要求在教育过程中必须做到()
第一次国共合作的政治基础和共同纲领是()。
甲和乙同住在一幢楼,他们同时出发骑车去图书馆,又同时到达图书馆,但途中甲休息的时间是乙骑车时间的,而乙休息的时间是甲骑车时间的,甲和乙骑车的速度比是()。
Whattwoproblemscanbesolvedbyburninggarbage?Accordingtothepassage,whichofthefollowingfourgroupsofgarbageis
Ididn’tknowatthetimewhathappenednext.Sartorisdidn’ttellmeuntillater,afterward.Perhapsuptothattimehehadnot
A、Twodayslater.B、Inacoupleofdays.C、Immediatelyafterthemeeting.D、Tomorrow.C细节题。文章最后讲到了要准备好立刻投入工作,报纸的第一期明天将出版。
E1Ninoisthenamegiventothemysteriousandoftenunpredictablechangeintheclimateoftheworld.Thisstrange【S1】______ha
最新回复
(
0
)