首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在闭区间[a,b]上连续(a,b>0),在(a,b)内可导.试证:在(a,b)内至少有一点ξ,使等式=f(ξ)一ξf’(ξ)成立.
设函数f(x)在闭区间[a,b]上连续(a,b>0),在(a,b)内可导.试证:在(a,b)内至少有一点ξ,使等式=f(ξ)一ξf’(ξ)成立.
admin
2019-08-12
30
问题
设函数f(x)在闭区间[a,b]上连续(a,b>0),在(a,b)内可导.试证:在(a,b)内至少有一点ξ,使等式
=f(ξ)一ξf’(ξ)成立.
选项
答案
[*] 它们在区间[a,b]上连续,在(a,b)内可导,且G’(x)=[*]满足柯西中值定理的三个条件,于是在(a,b)内至少有一点ξ,使得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/EvN4777K
0
考研数学二
相关试题推荐
设二次型f(x1,x2,x3)=XTAX=ax12+2x22-2x32+2bx1x3(b>0),其中二次型f的矩阵A的特征值之和为1,特征值之积为-12.(1)求a、b的值;(2)利用正交变换将二次型f化为标准形.并写出所用的正交变换和对应的正交矩阵
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)=xixj.(1)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型
设α1=(1,0,-2)T和α2=(2,3,8)T都是A的属于特征值2的特征向量,又向量β=(0,-3,-10)T,则Aβ=_______.
在x=0处展开下列函数至括号内的指定阶数:(Ⅰ)f(x)=tanx(x3);(Ⅱ)f(x)=sin(sinx)(x3).
设函数f(x)(x≥0)可微,且f(x)>0.将曲线y=f(x),x=1,x=a(a>1)及x轴所围成平面图形绕x轴旋转一周得旋转体体积为求:f(x);
求下列隐函数的微分或导数:(Ⅰ)设ysinx-cos(x-y)=0,求dy;(Ⅱ)设方程确定y=y(x),求y’与y".
用数列极限的定义证明下列极限:
设f(x)在[a,b]上二阶可导,且f"(x)>0,取xi∈[a,b](i=1,2,…,n)及ki>0(i=1,2,…,n)且满足k1+k2+…+kn=1.证明:f(k1x1+k2x2+…+knxn)≤k1f(x1)+k2f(x2)+…+knf(xn).
[*]此极限属型,用洛必达法则.因此
求极限:其中a≠0.
随机试题
论述合资企业的特征及股权形态。
在下列题中求各微分方程的通解或特解y"-2y’+y=0
下列证据既是传来证据也是直接证据的是()。
()就是要估算出一个地区对某种产品的潜在需求数量。
炉窑砌筑工程工序交接时,应提交锚固件和托砖板的有关资料,资料中应包括锚固件和托砖板的()。
桥梁拆除施工中,进行基础或局部块体拆除时,宜采用()的方法。
以下有关注册会计师专业胜任能力和应有的关注的陈述中,不恰当的是()。
霍布森选择是()。
技术与天才哪个对科学发展更重要——1994年英译汉及详解Accordingtothenewschoolofscientists,technologyisanoverlookedforceinexpandingthehori
有以下程序 #include<stdio.h> main() {char*s="01234"; while(*(++s)!=’\0’) {switch(*s-’0’) {case0: case1:putchar(*s+1);
最新回复
(
0
)