首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设φ(x)在x=a的某邻域内有定义,f(x)=|x-a|φ(x).则“φ(x)在x=a处连续”是“f(x)在x=a处可导”的 ( )
设φ(x)在x=a的某邻域内有定义,f(x)=|x-a|φ(x).则“φ(x)在x=a处连续”是“f(x)在x=a处可导”的 ( )
admin
2018-12-21
83
问题
设φ(x)在x=a的某邻域内有定义,f(x)=|x-a|φ(x).则“φ(x)在x=a处连续”是“f(x)在x=a处可导”的 ( )
选项
A、必要条件而非充分条件.
B、充分条件而非必要条件.
C、充分必要条件.
D、既非充分又非必要条件.
答案
D
解析
下面举两个例子说明应选(D).
①设φ(x)在x=0处连续,但f(x)=|x|φ(x)在x=0处不可导的例子如下:取φ(x)=1,但f(x)=|x|在x=0处不可导.
②设φ(x)在x=0的某邻域内有定义,但在x=0处不连续,而f(x)=|x|φ(x)在x=0处却可导的例子如下:设
所以f(x)在x=0处可导,f
’
(0)=1.
转载请注明原文地址:https://kaotiyun.com/show/8Aj4777K
0
考研数学二
相关试题推荐
(2012年)设区域D由曲线y=sinχ=±,y=1围成,则(χy5-1)dχdy=【】
(2005年)已知3阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=O,求线性方程组Aχ=0的通解.
(2011年)设向量组α1=(1,0,1)T,α2(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示.(Ⅰ)求a的值;(Ⅱ)将β1,β2,β3用α1,α2,
(2010年)设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表示.下列命题正确的是【】
(1993年)设二阶常系数线性微分方程y〞+αy′+βy=γeχ的一个特解为y=e2χ+(1+χ)eχ,试确定常数α、β、γ,并求该方程的通解.
|A|是n阶行列式,其中有一行(或一列)元素全是1,证明:这个行列式的全部代数余子式的和等于该行列式的值.
问λ为何值时,线性方程组有解,并求出解的一般形式.
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n),二次型f(χ1,χ2,…,χn)=χiχj.(1)记X=(χ1,χ2,…,χn)T,把f(χ1,χ2,…,χn)写成矩阵形式,并证
下列函数在给定区间上是否满足拉格朗日定理的所有条件?如满足,请求出定理中的数值ε(1)f(x)=x3[0,a]a>0(2)f(x)=lnx[1,2](3)f(x)=x3-5x2+x-2[-1,0]
e-2所以原式=e-2.
随机试题
已知A资产与市场组合之间的相关系数为0.8,A资产的标准差为54%,市场组合的标准差为45%,则A资产的β系数为()。
壮热无汗,身体沉重拘急,鼻干口渴,烦躁不眠,神昏谵语,脉滑数者,治疗首选
消渴病并发白内障的机理消渴病并发中风偏瘫的机理
甲公司开发的系列楼盘由乙公司负责安装电梯设备。乙公司完工并验收合格投入使用后,甲公司一直未支付工程款,乙公司也未催要。诉讼时效期间届满后,乙公司组织工人到甲公司讨要。因高级管理人员均不在,甲公司新录用的法务小王,擅自以公司名义签署了同意履行付款义务的承诺函
经纪人提供中介服务,是以()为主要目的。
根据《标准施工招标文件》,下列关于缺陷责任期内缺陷责任的表述,正确的是()。
关于施工成本目标控制的原则,正确的有()。
民事法律关系主体,主要是指参加民事活动,受民事法律规范调整,在法律上享有权利、承担义务的()
戏剧的功能不包括()。
Peterwill_____asmanagingdirectorwhenBillretires.
最新回复
(
0
)