首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)内二阶连续可导.证明:存在ξ∈(a,b),使得 f(a)+f(b)-2f[(a+b)/2]=[(b-a)2/4]f″(ξ)
设f(x)在[a,b]上连续,在(a,b)内二阶连续可导.证明:存在ξ∈(a,b),使得 f(a)+f(b)-2f[(a+b)/2]=[(b-a)2/4]f″(ξ)
admin
2022-08-19
51
问题
设f(x)在[a,b]上连续,在(a,b)内二阶连续可导.证明:存在ξ∈(a,b),使得
f(a)+f(b)-2f[(a+b)/2]=[(b-a)
2
/4]f″(ξ)
选项
答案
因为f(x)在(a,b)内二阶可导,所以有 f(a)=f[(a+b)/2]+f′[(a+b)/2][a-(a+b)/2]+[f″(ξ
1
)/2!][a-(a+b)/2]
2
, f(b)=f[(a+b)/2]+f′[(a+b)/2][a-(a+b)/2]+[f″(ξ
2
)/2!][b-(a+b)/2]
2
, 其中ξ
1
∈[a,(a+b)/2],ξ
2
∈[(a+b)/2,b] 两式相加得f(a)+f(b)-2f[(a+b)/2]=[(b-a)
2
/8]=[(b-a)
2
/8][f″(ξ
1
)+f″(ξ
2
)]. 因为f″(x)在(a,b)内连续,所以f″(x)在[ξ
1
,ξ
2
]上连续,从而f″(x)在[ξ
1
,ξ
2
]上取到最小值m和最大值M,故m≤[f″(ξ
1
)+f″(ξ
2
)]/2≤M, 由介值定理,存在ξ∈[ξ
1
,ξ
2
][*](a,b),使得[f″(ξ
1
)+f″(ξ
2
)]/2=f″(ξ), 故f(a)+f(b)-2f[(a+b)/2]=(b-a)
2
/8[f″(ξ
1
)+f″(ξ
2
)]=[(b-a)
2
/4]f″(ξ).
解析
转载请注明原文地址:https://kaotiyun.com/show/F3R4777K
0
考研数学三
相关试题推荐
设f(x)可导,则当△x→0时,△y-dy是△x的().
证明:曲线上任一点处切线的横截距与纵截距之和为2.
设f(x)二阶连续可导,且f(0)=1,f(2)=3,f’(2)=5,则∫01xf(2x)dx=________.
设一抛物线y=ax2+bx+c过点(0,0)与(1,2),且a<0,确定a,b,c,使得抛物线与x轴所围图形的面积最小.
(1)求二元函数f(x,y)=x2(2+y2)+ylny的极值.(2)求函数f(x,y)=(x2+2x+y)ey的极值.
设变换,其中z二阶连续可偏导,求常数a.
设z=f(x,y)在点(1,1)处可微,f(1,1)=1,f’1(1,1)=a,f’2(1,1)=b,又u=f[x,f(x,x)],求
求微分方程dx-xdy=0满足初始条件y(1)=0的解.
一汽车沿街道行驶,需要经过三个均设有红绿信号灯的路口,每个信号灯均为红或绿与其他信号灯为红或绿相互独立,且红绿两种信号灯显示的时间相等.以X表示该汽车首次遇到红灯前已通过的路口的个数.求
设y=y(x)由yexy+xcosx-1=0确定,则dy|x=0=________.
随机试题
下列哪种行为违背了辩论原则?
使用自动创建数据访问页创建数据访问页时,Access会在当前文件夹下将创建的数据访问页自动保存为()格式。
甲状腺肿大时与颈前其他肿块的鉴别,下列哪项最重要()
尿毒症患者肌酐清除率在10ml/min以下时,最理想的治疗方法是
根据《环境影响评价技术导则一地面水环境》,确定河流水环境质量现状调查范围可不考虑()。
关于流动资金估算,下列说法正确的是( )。
Haveyoueverwonderedwhatourfutureislike?Practicallyallpeopleexhibitadesiretopredicttheirfuture【C1】______.Most
男性,35岁。劳动中左小腿被重物砸伤,伤后左小腿肿痛来院。检查见左小腿高度肿胀,并有异常活动,患侧足感觉减退。如果该患者小腿高度肿胀,皮温低,足背动脉消失,足部感觉消失,其可能的并发症是
A、 B、 C、 D、 E、 D
下列选项中,评审方法是按照正式化程度逐渐增强排列的是______。
最新回复
(
0
)