首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2006年] 设在上半平面D={(x,y)|y>0}内,函数f(x,y)具有连续偏导数,且对任意t>0都有f(tx,ty)=t-2f(x,y).证明:对D内的任意分段光滑的有向简单闭曲线L,都有∮Lyf(x,y)dx—xf(x,y)dy=0.
[2006年] 设在上半平面D={(x,y)|y>0}内,函数f(x,y)具有连续偏导数,且对任意t>0都有f(tx,ty)=t-2f(x,y).证明:对D内的任意分段光滑的有向简单闭曲线L,都有∮Lyf(x,y)dx—xf(x,y)dy=0.
admin
2019-04-08
61
问题
[2006年] 设在上半平面D={(x,y)|y>0}内,函数f(x,y)具有连续偏导数,且对任意t>0都有f(tx,ty)=t
-2
f(x,y).证明:对D内的任意分段光滑的有向简单闭曲线L,都有∮
L
yf(x,y)dx—xf(x,y)dy=0.
选项
答案
在单连通域D内,对任意有向简单闭曲线L,证明 ∮
L
f(x,y)dx—xf(x,y)dy=0. 即证曲线积分与路径无关的等价条件二成立,其中P=yf(x,y),Q=-xf(x,y).可利用等价条件 [*],即一f(x,y)一xf’
x
(x,y)=f(x,y)+yf’
y
(x,y) ① 证明.如何证明等式①,当然需用题设 f(tx,ty)=t
-2
f(x,y) ② 证之.为此在等式②两边对t求导,得到 xf"(tx,ty)+yf’
y
(tx,ty)=一2t
-3
f(x,y). 注意到等式①两边不含t,对t求导后,在上式中应令t=1,得到 2f(x,y)+xf’
x
(x,y)+yf’
y
(x,y)=0, 因而式①成立,即[*]成立.于是等价条件二成立,即对D内的任意分段光滑的有向简单闭曲线L,都有∮
L
yf(x,y)dy-xf(x,y)dy=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/FJ04777K
0
考研数学一
相关试题推荐
(2012年)
(2003年)曲面z=z2+y2与平面2x+4y—z=0平行的切平面的方程是_____________。
(2013年)曲面x2+cos(xy)+yz+x=0在点(0,1,一1)处的切平面方程为()
设矩阵当a为何值时,方程AX=B无解、有唯一解、有无穷多解?在有解时,求解此方程。
设α1,α2,α3均为三维向量,则对任意的常数k,l,向量α1+kα3,α2+lα3线性无关是向量组α1,α2,α3线性无关的()
求柱面x2+y2=ax含于球面x2+y2+z2=a2内的曲面面积S,其中a>0为常数.
设点A(1,0,0),B(0,1,1),线段AB绕z轴一周所得旋转曲面为S.求曲面S界于平面z=0与z=1之间的体积.
[2018年]下列矩阵中,与矩阵相似的为().[img][/img]
[2018年]计算曲线积分∫Lsin2xdx+2(x2一1)ydy,其中L是曲线y=sinx上从点(0,0)到点(π,0)的一段.
[2012年]设A,B,C是随机事件,A与C互不相容,P(AB)=1/2,P(C)=1/3,=______.
随机试题
能产生LTA的细菌是
管电压在摄影条件选择中的意义,错误的是
保管特殊类型药材必须具有
在公共场所附近开挖沟槽时,应设防护设施,夜间设置照明灯和警示红灯。()
在某些情况下,被保险人患病或遭受意外伤害,最终是否残疾在短期内难以判定,为此保险公司规定一个定残期限,过了该期限后仍无明显好转征兆的,认定为全残。这种情况称为( )。
立面图的绘制中整个建筑的外轮廓尺寸线用( )线绘制。
信用风险管理委员会或类似机构可以考虑重新设定/调整限额的情况有()。
饮水时,应注意遵循少次多量的原则。
把对集体与个人的管理结合起来的班级管理是()。
A、Thecablecarride.B、GoldenGatePark.C、Fisherman’sWharf.D、Busesandstreetcars.A男士问女士最喜欢旧金山的什么,女士回答:“我也不知道,这很难说。我喜欢金门大桥
最新回复
(
0
)