首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2006年] 设在上半平面D={(x,y)|y>0}内,函数f(x,y)具有连续偏导数,且对任意t>0都有f(tx,ty)=t-2f(x,y).证明:对D内的任意分段光滑的有向简单闭曲线L,都有∮Lyf(x,y)dx—xf(x,y)dy=0.
[2006年] 设在上半平面D={(x,y)|y>0}内,函数f(x,y)具有连续偏导数,且对任意t>0都有f(tx,ty)=t-2f(x,y).证明:对D内的任意分段光滑的有向简单闭曲线L,都有∮Lyf(x,y)dx—xf(x,y)dy=0.
admin
2019-04-08
69
问题
[2006年] 设在上半平面D={(x,y)|y>0}内,函数f(x,y)具有连续偏导数,且对任意t>0都有f(tx,ty)=t
-2
f(x,y).证明:对D内的任意分段光滑的有向简单闭曲线L,都有∮
L
yf(x,y)dx—xf(x,y)dy=0.
选项
答案
在单连通域D内,对任意有向简单闭曲线L,证明 ∮
L
f(x,y)dx—xf(x,y)dy=0. 即证曲线积分与路径无关的等价条件二成立,其中P=yf(x,y),Q=-xf(x,y).可利用等价条件 [*],即一f(x,y)一xf’
x
(x,y)=f(x,y)+yf’
y
(x,y) ① 证明.如何证明等式①,当然需用题设 f(tx,ty)=t
-2
f(x,y) ② 证之.为此在等式②两边对t求导,得到 xf"(tx,ty)+yf’
y
(tx,ty)=一2t
-3
f(x,y). 注意到等式①两边不含t,对t求导后,在上式中应令t=1,得到 2f(x,y)+xf’
x
(x,y)+yf’
y
(x,y)=0, 因而式①成立,即[*]成立.于是等价条件二成立,即对D内的任意分段光滑的有向简单闭曲线L,都有∮
L
yf(x,y)dy-xf(x,y)dy=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/FJ04777K
0
考研数学一
相关试题推荐
(2013年)设数列(an}满足条件:a0=3,a1=1,an-2一n(n一1)an=0(n≥2)。S(x)是幂级数的和函数。(I)证明:S"(x)一S(x)=0;(Ⅱ)求S(x)的表达式。
(2009年)设an为曲线y=xn与y=xn+1(n=1,2,…)所围成区域的面积,记求S1与S2的值。
(2007年)设幂级数内收敛,其和函数y(x)满足y"一2xy′一4y=0,y(0)=0,y′(0)=1。(I)证明n=1,2,…;(Ⅱ)求y(x)的表达式。
(2015年)已知函数f(x,y)=x+y+xy,曲线C:x2+y2+xy=3,求f(x,y)在曲线C上的最大方向导数。
设α1,α2,α3均为三维向量,则对任意的常数k,l,向量α1+kα3,α2+lα3线性无关是向量组α1,α2,α3线性无关的()
设直线y=kx与曲线所围平面图形为D1,它们与直线x=1围成平面图形为D2.(1)求k,使得D1与D2分别绕x轴旋转一周成旋转体体积V1与V2之和最小,并求最小值;(2)求此时的D1+D2.
如图1.3-1所示,设曲线方程为,梯形OABC的面积为D,曲边梯形OABC的面积为D1,点A的坐标为(a,0),a>0,证明:
设函数Q(x,y)在平面xOy上具有一阶连续偏导数,曲线积分2xydx+Q(x,y)dy与路径无关,并且对任意t恒有,求Q(x,y)。
设直线L:求该旋转曲面界于z=0与z=1之间的几何体的体积.
[2018年]设则().
随机试题
A.室性心动过速、室颤B.支气管哮喘,心源性休克C.高钾血症D.失代偿性心衰、急性心梗E.胆道阻塞性疾病地高辛的禁忌证是
一个检验检测机构的质量方针是经()批准正式发布的。
能源库存量核算应遵循的原则有()。
下列关于包装物押金的增值税、消费税的计税说法中,正确的是()。
以下关于索引符号和详图符号说法中错误的是()。
在计算机中用于存储、处理大量数据的软件称为()。
1,-4,4,8,40,()。
若|x-2y-3|与|3x-4y+2|互为相反数,则x2-y2=__________;
AftervisitingWidenerUniversityandlearningaboutitsprogramrequiring300hoursofcommunityserviceinthesurroundingpoo
查询设计器的“排序依据”选项卡对应于SQL-SELECT语句的______短语。第(11)到(12)题中使用的两个数据表:职称和职工表的结构如下:“职工”表:职工号C(4),姓名C(8),性别C(2),职称号C(4),工资N(7,2)
最新回复
(
0
)