首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2006年] 设在上半平面D={(x,y)|y>0}内,函数f(x,y)具有连续偏导数,且对任意t>0都有f(tx,ty)=t-2f(x,y).证明:对D内的任意分段光滑的有向简单闭曲线L,都有∮Lyf(x,y)dx—xf(x,y)dy=0.
[2006年] 设在上半平面D={(x,y)|y>0}内,函数f(x,y)具有连续偏导数,且对任意t>0都有f(tx,ty)=t-2f(x,y).证明:对D内的任意分段光滑的有向简单闭曲线L,都有∮Lyf(x,y)dx—xf(x,y)dy=0.
admin
2019-04-08
44
问题
[2006年] 设在上半平面D={(x,y)|y>0}内,函数f(x,y)具有连续偏导数,且对任意t>0都有f(tx,ty)=t
-2
f(x,y).证明:对D内的任意分段光滑的有向简单闭曲线L,都有∮
L
yf(x,y)dx—xf(x,y)dy=0.
选项
答案
在单连通域D内,对任意有向简单闭曲线L,证明 ∮
L
f(x,y)dx—xf(x,y)dy=0. 即证曲线积分与路径无关的等价条件二成立,其中P=yf(x,y),Q=-xf(x,y).可利用等价条件 [*],即一f(x,y)一xf’
x
(x,y)=f(x,y)+yf’
y
(x,y) ① 证明.如何证明等式①,当然需用题设 f(tx,ty)=t
-2
f(x,y) ② 证之.为此在等式②两边对t求导,得到 xf"(tx,ty)+yf’
y
(tx,ty)=一2t
-3
f(x,y). 注意到等式①两边不含t,对t求导后,在上式中应令t=1,得到 2f(x,y)+xf’
x
(x,y)+yf’
y
(x,y)=0, 因而式①成立,即[*]成立.于是等价条件二成立,即对D内的任意分段光滑的有向简单闭曲线L,都有∮
L
yf(x,y)dy-xf(x,y)dy=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/FJ04777K
0
考研数学一
相关试题推荐
(2006年)将函数展开成x的幂级数。
设曲线L的极坐标方程为r=r(θ),M(r,θ)为L上任一点,M0(2,0)为L上一定点,若极径OM0,OM与曲线L所围成的曲边扇形面积值等于L上M0,M两点间弧长值的一半,求曲线L的方程.
求曲面积分I=x2dydz+y2dzdx+z2dxdy,其中S是长方体Ω:0≤x≤a,0≤y≤b,0≤z≤C的表面外侧.
设直线L:求该旋转曲面界于z=0与z=1之间的几何体的体积.
(2018年)设则()
[2018年]下列矩阵中,与矩阵相似的为().[img][/img]
[2018年]计算曲线积分∫Lsin2xdx+2(x2一1)ydy,其中L是曲线y=sinx上从点(0,0)到点(π,0)的一段.
[2012年]求幂级数的收敛域及和函数.
[2012年]设A为三阶矩阵,P为三阶可逆矩阵,且P-1AP=.若P=[α1,α2,α3],Q=[α1+α2,α2,α3],则Q-1AQ=().[img][/img]
随机试题
术前准备中,下列哪项处理错误
患者男性,68岁,近期间断出现胃部不适,行胃镜.取病理检查示:A型慢性萎缩性胃炎。以下哪项为该患者可能的并发症
IwasinthesixthgradeandhadjustmovedtoCaliforniafromAlaskawhenImetMs.LindaJones.Mostteachersseemedto【C1】___
根据下列材料,回答以下问题2011年底,全国拥有水上运输船舶17.92万艘,比上年末增长0.5%;净载重量21264.32万吨,增长17.9%;平均净载重量增长17.3%;集装箱箱位147.52万TEU,增长11.4%;船舶功率59万千瓦,增长1
士为知己者死,女为悦己者容。对于具有英雄主义__________的伪英雄而言,这句誓言被他们奉为纲领性的行动指南。因为把他人的重要性置于自己的重要性之上,这句誓言及对其的追随行为展示的是一种奴化了的畸形心态。同时,不经意间,也用一种对称的手法把男女两性的不
根据下列材料回答问题。从2001年到2007年,排放达标率逐年提高的是()。
结合实际,试述教师应具备的基本素养。
人民政协的两大主题是民主和协商,人民政协的主要职能有
设求f(2010)(0).
Theyareregardedaschoresbybothsexes,butfall(1)_____ononlyone.ThelatestsurveyoftimeuseinAmericasuggestswomen
最新回复
(
0
)