首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知三阶矩阵A与三维向量x,使得向量组x,Ax,A2x线性无关,且满足A2x=3Ax-2A2x。 (Ⅰ)记P=(x,Ax,A2x),求三阶矩阵B,使A=PBP-1; (Ⅱ)计算行列式|A+E|。
已知三阶矩阵A与三维向量x,使得向量组x,Ax,A2x线性无关,且满足A2x=3Ax-2A2x。 (Ⅰ)记P=(x,Ax,A2x),求三阶矩阵B,使A=PBP-1; (Ⅱ)计算行列式|A+E|。
admin
2018-04-08
49
问题
已知三阶矩阵A与三维向量x,使得向量组x,Ax,A
2
x线性无关,且满足A
2
x=3Ax-2A
2
x。
(Ⅰ)记P=(x,Ax,A
2
x),求三阶矩阵B,使A=PBP
-1
;
(Ⅱ)计算行列式|A+E|。
选项
答案
(Ⅰ)求B,使A=PBP
-1
成立,等式两边右乘P,即AP=PB成立。 由题设知,AP=A(x,Ax,A
2
x)=(Ax,A
2
x,A
3
x),又A
3
x=3Ax一2A
2
x,故有AP=(Ax,A
2
x,3Ax-2A
2
x)=(x,Ax,A
2
x) [*] 即如果取 [*] 此时的B满足A=PBP
-1
,即为所求。 (Ⅱ)由(Ⅰ)及矩阵相似的定义知,A与B相似。由矩阵相似的性质:若A~B,则f(A)~f(B),则A+E与B+E也相似。又由相似矩阵的行列式相等,得|A+E|=|B+E|=[*]=一4。
解析
转载请注明原文地址:https://kaotiyun.com/show/Zlr4777K
0
考研数学一
相关试题推荐
λ为何值时,方程组无解,有唯一解或有无穷多解?并在有无穷多解时写出方程组的通解.
设n阶矩阵A,B等价,则下列说法中,不一定成立的是()
已知线性方程组(I)及线性方程组(Ⅱ)的基础解系ξ1=[一3,7,2,0]T,ξ2=[一1,一2,0,1]T.求方程组(I)和(Ⅱ)的公共解.
设A是n阶矩阵,λ是A的r重特征根,A的对应于λ的线性无关的特征向量是k个,则k满足__________.
设函数f(x)在区间[a,b]上连续,且在(a,b)内有f’(x)>0.证明:在(a,b)内存在唯一的ξ,使曲线y=f(x)与两直线y=f(ξ),x=a所围平面图形面积S1是曲线y=f(x)与两直线y=f(ξ),x=b所围平面图形面积S2的3倍.
设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,且A的秩(A)=3,α1=[1,2,3,4]T,α2+α3=[0,1,2,3]T,C表示任意常数,则线性方程组AX=b的通解X=()。
设X1,X2,X3,X4是取自正态总体N(0,4)的简单随机样本,令Y=5(X1-2X2)2+(3X3-4X4)2,求P(Y≤2)。
设有正项级数是它的部分和(1)证明收敛;(2)判断级数是条件收敛还是绝对收敛,并给予证明.
已知P(A)=P(B)=P(C)=,P(AB)=0,P(AC)=P(BC)=,则事件A、B、C全不发生的概率为_______.
设f(x)=讨论y=f[g(x)]的连续性,若有间断点并指出类型.
随机试题
《断魂枪》中描写眼睛“黑的像两口小井”“像两个香火头”的人物是()
具有润肺止咳、灭虱杀虫功效的药物是
一般中、小城市干道网密度的建议值是()km/km2。
常用的投标策略中,()是指一个工程项目总报价在基本确定后,通过调整内部各个项目的报价,以期既不提高总报价、不影响中标,又能在结算时得到更理想的经济效益。
静态炉窑与动态炉窑砌筑的不同点有()。
阅读下列材料,回答问题。“Myfriends”教学设计片段教材依据:PEP小学英语(四年级上册)Unit3PartBLet’stalk。知识目标:(1)让学生初步掌握Let’stalk中的句子
毛泽东同志毕生最突出、最伟大的贡献,就是领导我们党和人民()。
辛亥革命的历史意义是
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.求α1,α2,α3,α4应满足的条件;
Thebuildingcollapsedbecauseitsfoundationwasnotstrongenoughto______theweightofthebuilding.
最新回复
(
0
)