首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵 其行列式|A|=-1,又A的伴随矩阵A*有一个特征值λ0,属于λ0的一个特征向量为α=(-1,-1,1)T,求a,b,c和λ0的值。
设矩阵 其行列式|A|=-1,又A的伴随矩阵A*有一个特征值λ0,属于λ0的一个特征向量为α=(-1,-1,1)T,求a,b,c和λ0的值。
admin
2018-04-08
37
问题
设矩阵
其行列式|A|=-1,又A的伴随矩阵A
*
有一个特征值λ
0
,属于λ
0
的一个特征向量为α=(-1,-1,1)
T
,求a,b,c和λ
0
的值。
选项
答案
根据题设,A
*
有一个特征值λ
0
,属于λ
0
的一个特征向量为α=(-1,-1,1)
T
,根据特征值和特征向量的概念,有A
*
α=λ
0
a,把|A|=-1代入AA
*
=|A|E中,得AA
*
=|A|E=-E,则AA
*
α=-Eα=-α。把A
*
α=λ
0
α代入,于是AA
*
α=Aλ
0
α=λ
0
Aα,即-α=λ
0
Aα,也即 [*] 因|A|=-1≠0,A的特征值λ≠0,A
*
的特征值 [*] 故λ
0
≠0,由(1),(3)两式得 λ
0
(-a+1+c)=-λ
0
(-1+c-a),两边同除λ
0
,得-a+1+c=-(-1+c-a),整理得a=c,代入(1)中,得λ
0
=1。再把λ
0
=1代入(2)中得b=-3,又由|A|=-1,b=-3以及a=c,有 |A|=[*]=a-3=-1。 故a=c=2,因此a=2,b=-3,c=2,λ
0
=1。
解析
转载请注明原文地址:https://kaotiyun.com/show/ylr4777K
0
考研数学一
相关试题推荐
已知α1=[1,2,一3,1]T,α2=[5,一5,a,11]T,α3=[1,一3,6,3]T,α4=[2,一1,3,a]T.问:a为何值时,α4能由α1,α2,α3线性表出,并写出它的表出式.
已知α1=[1,2,一3,1]T,α2=[5,一5,a,11]T,α3=[1,一3,6,3]T,α4=[2,一1,3,a]T.问:a为何值时,向量组α1,α2,α3,α4线性无关;
设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,且r(A)=3,α1=[1,2,3,4]T,α2+α3=[0,1,2,3]T,k是任意常数,则方程组AX=b的通解是()
设矩阵,矩阵X满足AX+E=A2+X,其中E为3阶单位矩阵.求矩阵X
已知3维向量组α1,α2,α3线性无关,则向量组α1一α2,α2一kα3,α3一α1也线性无关的充要条件是k__________.
设n阶矩阵A,B等价,则下列说法中,不一定成立的是()
已知B是n阶矩阵,满足B2=E(此时矩阵B称为对合矩阵).求B的特征值的取值范围.
设A是s×n矩阵,B是A的前m行构成的m×n矩阵,已知A的行向量组的秩为r.证明:r(B)≥r+m—s.
设三阶方阵A、B满足A2B—A—B=E,其中E为三阶单位矩阵,若A=,则行列式|B|=________.
设以元线性方程组Ax=b,其中(I)证明行列式|A|=(n+1)an;(Ⅱ)当a为何值时,该方程组有唯一的解,并在此时求x1;(Ⅲ)当a为何值时,该方程组有无穷多解,并在此时求其通解.
随机试题
在检修计量装置前,切换流程的前一个操作是()。
内质清香,汤绿味浓是()的品质特点。
过多的,过度的,极端的adj.e________
A.甲醛B.甲苯C.麝香草酚D.浓盐酸E.冰乙酸用于尿糖、尿蛋白定量检查的防腐剂是
《临床输血技术规范》的立法宗旨是规范、指导医疗机构
男,50岁。因高血压,高脂血症服用阿司匹林3个月,1个月来反复出现上腹疼痛,查体:腹软,中上腹压痛,下列治疗药物中首选的是
触电防护技术包括屏护、间距、绝缘、接地等,屏护是采用护罩、护盖、栅栏、箱体、遮拦等将带电体与外界隔绝。下列针对用于触电防护的户外栅栏的高度要求中,正确的是()。
简述注册消防工程师职业道德原则的作用。
李四有两个儿子李甲、李乙,一个女儿李丙,妻子早亡,李四死后留有存款40万元,立有遗嘱一份,表示死后把10万元作为嫁妆留给女儿丙。下列就遗产分配说法正确的是()。
1.2015年年底至2016年4月期间,刚刚搬到新校址的某外国语学校部分学生不断出现各种不良反应和疾病。学生家长调查发现,学校北面有一片工地,原本有三家化工厂,化工厂生产的大量氯苯、环芳烃、汞、镉等污染物严重超标,导致所在地块成为“毒地”。近年来,随着社会
最新回复
(
0
)