首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(一1,2,一3)T都是A属于λ=6的特征向量,求矩阵A.
设3阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(一1,2,一3)T都是A属于λ=6的特征向量,求矩阵A.
admin
2017-05-10
50
问题
设3阶实对称矩阵A的秩为2,λ
1
=λ
2
=6是A的二重特征值,若α
1
=(1,1,0)
T
,α
2
=(2,1,1)
T
,α
3
=(一1,2,一3)
T
都是A属于λ=6的特征向量,求矩阵A.
选项
答案
由r(A)=2知|A|=0,所以λ=0是A的另一特征值. 设矩阵A属于λ=0的特征向量α=(x
1
,x
2
,x
3
)
T
,由于实对称矩阵不同特征值的特征向量相互正交,故有[*]解出此方程组的基础解系 α=(一1,1,1)
T
. 那么A(α
1
,α
2
,α)=(6α
1
,6α
2
,0),用初等变换法解此矩阵方程得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/FPH4777K
0
考研数学三
相关试题推荐
已知二次型f(x1,x2,x3)=4x22-3x32+4x1x2-4x1x3+8x2x3.求可逆矩阵P,使得P-1AP为对角矩阵.
已知二次型f(x1,x2,x3)=4x22-3x32+4x1x2-4x1x3+8x2x3.写出二次型f的矩阵表达式.
设n阶矩阵求可逆矩阵P,使得P-1AP为对角矩阵.
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,满足条件αTβ=0,记n阶矩阵A=αβT.求:A2;
设3阶交对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A的属于λ1的一个特征向量.B=A5-4A3+E,其中E为3阶单位矩阵求矩阵B.
设α1=(2,-1,3,0),α2=(1,2,0,-2),α3=(0,-5,3,4),α4=(-1,3,t,0),则________时,α1,α2,α3,α4线性相关.
对于第二类曲面积分,写出类似于公式(10)那样的计算公式,其中定向光滑曲面∑的方程为:(1)y=y(z,x),(z,x)∈Dzx;(2)x=x(y,x),(y,z)∈Dyz.
设a1,a2,a3,a4是四维非零列向量组,A=(a1,a2,a3,a4),A*为A的伴随矩阵,已知方程组AX=0的通解为X=k(0,1,I,0)T,则方程组A*X=0的基础解系为().
设随机变量X和Y相互独立,X在区间(0,2)上服从均匀分布,Y服从参数为1的指数分布,则概率P{X+Y>1}=().
设F(x)在闭区间[0,c]上连续,其导数F’(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明不等式:F(a+b)≤F(a)+F(b),其中常数,a,b满足条件0≤a≤b≤a+b≤c.
随机试题
患儿,男,12岁,开口严重受限4年,幼时曾有面部外伤史。如果在X线表现为关节结构消失,呈现致密团块,角前切迹加深,其开口受限的原因可能是
下列剂型作用速度最快的是()
根据以下资料,回答下列问题。2012年,我国外贸进出口总值38667.6亿美元,比上年增长6.2%。其中出口20498.3亿美元,增长7.9%;进口18178.3亿美元,增长4.3%;贸易顺差2311亿美元,扩大48.1%。2012年,我国一般贸
(2007年)为了减少汽车尾气中NO和CO的污染,按下列反应进行催化转化,NO(g)+CO(g)=N2(g)+CO2(g)的=-373.2kI/mol,为了提高转化率,应采取的措施是()。
注册咨询工程师(投资)职业道德反映了()的主要内容。
较大体积的混凝土墩台及其基础埋放石块的数量不宜超过混凝土结构体积的()。
经营性资产是在生产和流通中能够为社会提供商品或劳务的资产。经营性资产的使用单位是具有法人地位的企业,其运营要以追求经济效益为原则。从会计角度看,主要指企业因盈利目的而持有,且实际也具有盈利能力的资产。根据上述定义,下列不属于“经营性资产”的是()。
物流企业的需求预测一般按照业务部门划分预测任务。
A、 B、 C、 D、 D
Christinewasrecentlydiggingthrougholdboxesinherstoreroompreparingtomovetoanewhouse.Inonebox,shecameacross
最新回复
(
0
)