首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组a1,a2线性无关,向量组a1+b,a2+b线性相关,证明:向量b能由向量组a1,a2线性表示。
设向量组a1,a2线性无关,向量组a1+b,a2+b线性相关,证明:向量b能由向量组a1,a2线性表示。
admin
2019-02-26
35
问题
设向量组a
1
,a
2
线性无关,向量组a
1
+b,a
2
+b线性相关,证明:向量b能由向量组a
1
,a
2
线性表示。
选项
答案
因为a
1
,a
2
线性无关,a
1
+b,a
2
+b线性相关,所以b≠0,且存在不全为零的常数k
1
,k
2
,使 k
1
(a
1
+b)+k
2
(a
2
+b)=0,则有(k
1
+k
2
)b= —k
1
a
1
—k
2
a
2
。 又因为a
1
,a
2
线性无关,若k
1
a
1
+k
2
a
2
=0,则k
1
=k
2
=0,这与k
1
,k
2
不全为零矛盾,于是有 k
1
a
1
+k
2
a
2
≠0,(k
1
+
2
)b≠0。 综上k
1
+k
2
≠0,因此由(k
1
+k
2
)b= —ka
1
—k
2
a
2
得 b=[*],k
1
,k
2
∈R,k
1
+k
2
≠0。
解析
转载请注明原文地址:https://kaotiyun.com/show/FT04777K
0
考研数学一
相关试题推荐
设A为m×n矩阵,齐次线性方程组AX=0仅有零解的充分条件是()
设函数u=u(x,y)满足及u(x,2x)=x,u’1(x,2x)=x2,u有二阶连续偏导数,则u’’11(x,2x)=()
n阶矩阵的秩为n一1,则a=().
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有四个命题:①若Ax=0的解均是Bx=0的解,则r(A)≥r(B);②若r(A)≥r(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则r(A)=r(n);④若r(
设A是m×n矩阵,B是n×m矩阵。构造(m+n)阶矩阵(Ⅰ)计算HG和GH;(Ⅱ)证明|H|=|Em-AB|=|En-BA|。
判断矩阵A=是否可相似对角化。
(2017年)设薄片型S是圆锥面被柱面z2=2x割下的有限部分,其上任一点的密度为记圆锥面与柱面的交线为C。(I)求C在xOy面上的投影曲线的方程;(Ⅱ)求S的质量m。
(2002年)设函数f(x)在(一∞,+∞)内具有一阶连续导数,L是上半平面(y>0)内的有向分段光滑曲线,其起点为(a,b),终点为(c,d)。记(I)证明曲线积分I与路径L无关;(Ⅱ)当ab=cd时,求I的值。
(2008年)计算曲线积分其中L是曲线y=sinx上从点(0,0)到点(π,0)的一段。
设半径为R的球之球心位于以原点为中心、a为半径的定球面上(2a>R>0,a为常数).试确定R为何值时前者夹在定球面内部的表面积为最大,并求出此最大值.
随机试题
设计一个网页时首先要考虑的问题是()
A.生物药剂学指标B.有效性指标C.安全性指标D.稳定性指标E.均一性指标药品活性成分在单位药品中的物理、化学、生物药剂学、安全性、有效性、稳定性等指标的等同程度是()
外疡可由多种原因引起,但主要是由于()。
目前,我国银行问外汇市场人民币对美元的买卖价可浮动的范围为()。
隋朝综合了汉魏以来的官制,在中央确立了()。
______是Internet上的WWW服务器,它的主要任务是在Internet中主动搜索其他WWW服务器中的信息并对其自动索引,将索引内容存储在可供查询的大型数据库中。
微机硬件系统中,最大、最主要的一块集成电路板卡是
Themotherplacedtheblanketovertheboy,leavingonlyhisface(uncover)______.
A、TheywillreviewtheseminarthisweekonChicagotogether.B、TheywillattendMr.Johnson’sseminaragain.C、Theywillattend
Forthispart,youareallowed30minutestowriteashortessayentitledHowtoStayVigorous.Youressayshouldincludetheim
最新回复
(
0
)