首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
假设二维随机变量(X,Y)在矩形区域G={(x,y)|0≤x≤2,0≤y≤1}上服从均匀分布.记 求: U和V的联合分布;
假设二维随机变量(X,Y)在矩形区域G={(x,y)|0≤x≤2,0≤y≤1}上服从均匀分布.记 求: U和V的联合分布;
admin
2019-05-08
56
问题
假设二维随机变量(X,Y)在矩形区域G={(x,y)|0≤x≤2,0≤y≤1}上服从均匀分布.记
求:
U和V的联合分布;
选项
答案
解一 如图3.3.1.1所示,设二维随机变量(X,Y)在区域A,B,C中取值的事件依次记为A,B,C;S表示有关区域的面积.因(X,Y)在G上服从均匀分布,故 [*] 而 P(U=0,V=0)=P(X≤Y,X≤2Y)=P(A)=1/4, P(U=0,V=1)=P(X≤Y,X>2Y)=P([*])=0, P(U=1,V=0)=P(X>Y,X≤2Y)=P(B)=1/4, P(U=1,V=1)=P(X>Y,X>2Y)=P(C)=1/2. 于是得到(U,V)的联合分布律为 [*] 解二 因(X,Y)在区域G上服从均匀分布,G的面积S
G
=2,故其概率密度函数为 [*] 因而 P(U=0,V=0)=P(X≤Y,X≤2Y)=P(A)=1/4, P(U=0,V=1)=P(X≤Y,X>2Y)=P([*])=0, P(U=1,V=0)=P(X>Y,X≤2Y)=P(B)=1/4, P(U=1,V=1)=P(X>Y,X>2Y)=P(C)=1/2.
解析
转载请注明原文地址:https://kaotiyun.com/show/FbJ4777K
0
考研数学三
相关试题推荐
设总体X的概率密度为其中θ为未知参数且大于零,X1,X2,…,Xn为来自总体X的简单随机样本。(Ⅰ)求θ的矩估计量;(Ⅱ)求θ的最大似然估计量。
设随机变量X的密度函数为φ(x),且φ(一x)=φ(x),F(x)为X的分布函数,则对任意实数a,有()
设随机变量X和Y的联合密度为(Ⅰ)试求X的概率密度f(x);(Ⅱ)试求事件“X大于Y”的概率P{X>Y};(Ⅲ)求条件概率P{Y>1|X<0.5}。
设X1,X2,…,Xn是来自参数为λ的泊松分布总体的一个样本,则λ的极大似然估计量为________。
设二维随机变量(X,Y)在xOy平面上由直线y=x与曲线y=x2所围成的区域上服从均匀分布,则P{0<x<=________。
设f(x)在[a,b]上连续,且f’’(x)>0,对任意的x1,x2∈[a,b]及0<λ<1,证明:f[λx1+(1-λ)x2]≤λf(x1)+(1-λ)f(x2).
微分方程xy’=+y(x>0)的通解为______.
设级数(an-an-1)收敛,且bn绝对收敛.证明:anbn绝对收敛.
设f(x)∈C[0,1],f(x)>0.证明积分不等式:ln∫01f(x)dx≥∫01lnf(x)dx.
设A=(aij)是三阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式。若aij+Aij=0(i,j=1,2,3),则|A|=__________。
随机试题
痰热互结,症见胸脘痞闷,按之则痛,舌苔黄腻,脉滑数者,治宜选用
Excusemeforbreakfastin,______Ihavesomenewsforyou.
龋病是牙体硬组织发生的:()
下列数字疼痛评分法叙述正确的是
A、易患水痘的人群B、易患白色念珠菌感染的人群C、易患白斑的人群D、易患扁平苔藓的人群E、易患地图舌的人群病毒感染的儿童
患者男,28岁。拖拉机挤压伤,胸痛、胸闷2小时。体检:血压80/60mmHg,脉率103次/分。鼻翼翕动,胸骨区吸气时凹陷,呼气时凸出。X线检查:胸骨上端骨折;左右第3、4、5、6、7肋骨骨折。全腹有压痛,反跳痛、腹肌紧张,有移动性浊音。腹腔穿刺吸出不凝血
重置价格的出现是技术进步的必然结果,同时也是“()”的体现。
金字塔平视时为等边三角形,其底面是正方形,若底边长为100米,则每个侧面的面积为多少?
墓于以下题干,回答问题一个店主准备糖果礼物盒,每个盒子包含从F、G、H中选出的两种硬糖和从P、Q、R、S、T中选出的3种软糖,附带下列限制条件:Q和T不能选入同一盒;P和S不能选入同一盒;G和T不能选入同一盒。
Answerthequestionbelow,usingNOMORETHANTHREEWORDSfromthepassageforeachanswer.Writeyouranswersinboxes11-13on
最新回复
(
0
)