首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[a,b]上二阶可导,g’’(x)≠0,f(a)= f(b)=g(a) —g(b)=0. g(x)≠0.任意x∈(a,b);
设f(x),g(x)在[a,b]上二阶可导,g’’(x)≠0,f(a)= f(b)=g(a) —g(b)=0. g(x)≠0.任意x∈(a,b);
admin
2019-08-26
57
问题
设f(x),g(x)在[a,b]上二阶可导,g’’(x)≠0,f(a)= f(b)=g(a) —g(b)=0.
g(x)≠0.任意x∈(a,b);
选项
答案
反证法. 若不然,则在(a,b)内至少存在一点c,使g(c)=0,于是由已知条件知,g(x)在[a,c]与[c,b]上满足罗尔定理条件.分别应用罗尔定理,得ε
1
∈(a,c),ε
2
∈(c,b),使 g’(ε
1
)=0,g’(ε
2
)=0, 于是g’(x)在[ε
1
,ε
2
]上满足罗尔定理条件,进一步应用罗尔定理,存在η∈(ε
1
,ε
2
)?(a,b),使 g’’(η)=0,这与条件g’’ (x)≠0,x∈(a,b)矛盾. 故g(x)≠0,x∈(a,b).
解析
转载请注明原文地址:https://kaotiyun.com/show/FcJ4777K
0
考研数学三
相关试题推荐
设平面区域D1={(x,y)||x|+|y|≤1},D2=t(x,y)|x2+y2≤1},D3={(x,y)|≤1},且I1=|xy|dσ,则
设A是n阶可逆矩阵,A是d的特征值,则(A*)2+E必有特征值___________.
已知α1=(1,1,0,2)T,α2=(一1,1,2,4)T,α3=(2,3,a,7)T,α4=(一1,5,一3,a+6)T,β=(1,0,2,b)T,问a,b取何值时,(Ⅰ)β不能由α1,α2,α3,α4线性表示?(Ⅱ)β能用α1,α2,α3,α4线性表
设二维随机变量(X,Y)的联合分布为其中a,b,c为常数,且EXY=一0.1,P{X≤0|Y≥2}=,记Z=X+Y.求:Z的概率分布;
设随机变量X和Y都服从正态分布,则
设有两箱同种零件:第一箱内装50件,其中10件一等品;第二箱内装30件,其中18件一等品.现从两箱中随机挑出一箱,然后从该箱中先后随机取出两个零件(取出的零件均不放回).试求(1)先取出的零件是一等品的概率p;(2)在先取出的是一等品的
(2007年)设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,又f(a)=g(a),f(b)=g(b),证明:Ⅰ)存在η∈(a,b),使得f(η)=g(η);Ⅱ)存在ξ∈(a,b),使得f’’(ξ)
设函数f(u)具有二阶连续导数,而z=f(exsiny)满足方程求f(u).
已知函数y=e2x+(x+1)ex是二阶常系数线性非齐次方程的解.求方程通解及方程.
已知3阶方阵A的行列式|A|=2,方阵B=.其中Aij为A的(i,j)元素的代数余子式,求AB.
随机试题
能产生LTA的细菌是
管电压在摄影条件选择中的意义,错误的是
保管特殊类型药材必须具有
在公共场所附近开挖沟槽时,应设防护设施,夜间设置照明灯和警示红灯。()
在某些情况下,被保险人患病或遭受意外伤害,最终是否残疾在短期内难以判定,为此保险公司规定一个定残期限,过了该期限后仍无明显好转征兆的,认定为全残。这种情况称为( )。
立面图的绘制中整个建筑的外轮廓尺寸线用( )线绘制。
信用风险管理委员会或类似机构可以考虑重新设定/调整限额的情况有()。
饮水时,应注意遵循少次多量的原则。
把对集体与个人的管理结合起来的班级管理是()。
A、Thecablecarride.B、GoldenGatePark.C、Fisherman’sWharf.D、Busesandstreetcars.A男士问女士最喜欢旧金山的什么,女士回答:“我也不知道,这很难说。我喜欢金门大桥
最新回复
(
0
)