首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0.记n阶矩阵A=αβT.求: 矩阵A的特征值和特征向量.
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0.记n阶矩阵A=αβT.求: 矩阵A的特征值和特征向量.
admin
2018-07-26
86
问题
设向量α=(a
1
,a
2
,…,a
n
)
T
,β=(b
1
,b
2
,…,b
n
)
T
都是非零向量,且满足条件α
T
β=0.记n阶矩阵A=αβ
T
.求:
矩阵A的特征值和特征向量.
选项
答案
设λ为A的任一特征值,x(≠0)为对应的特征向量,则Ax=λx,两端左乘A,得A
2
x=λAx=λ
2
x,因为A
2
=O,所以λ
2
x=0,又x≠0,故λ=0.即矩阵A的特征值全为零. 不妨设向量α,β中分量a
1
≠0,b
1
≠0,对齐次方程组(0E-A)x=0的系数矩阵施行初等行变换: [*] 由此可得方程组(0E-A)X=0的基础解系为: α
1
=(-b
2
/b
1
,1,0,…,0)
T
,α
2
=(-b
3
/b
1
,0,1,…,0)
T
,…,α
n-1
=(-b
n
/b
1
,0,0,…,1)
T
于是,A的属于特征值λ=0的全部特征向量为: c
1
α
1
+c
2
α
2
+…c
n-1
α
n-1
(c
1
,c
2
,…,c
n-1
是不全为零的任意常数).
解析
主要考查幂零方阵(即满足A
m
=O的方阵A,其中m为正整数)的特征值的计算及方阵特征向量的求法,注意α≠0,β≠0,故α,β的分量不全为零,而假设a
1
≠0,b
1
≠0,对于消元最为简单.
转载请注明原文地址:https://kaotiyun.com/show/mHW4777K
0
考研数学三
相关试题推荐
证明不等式:
某工厂生产甲、乙两种产品,当这两种产品的产量分别为x和y(单位:吨)时的总收益函数为R(x,y)=42x+27y-4x2-2xy-2,总成本函数为C(x,y)=36+8x+12y(单位:万元).除此之外,生产甲、乙两种产品每吨还需分别支付排污费2万元,1万
已知A=,矩阵X满足A*X=A-1+2X,其中A*是A的伴随矩阵,则X=______.
设(Ⅰ)函数f(x)在[0,+∞)上连续,且满足f(0)=0及0≤f(x)≤ex-1;(Ⅱ)平行于y轴的动直线MN与曲线y=f(x)和y=ex-1分别交于点P2和P1;(Ⅲ)由曲线y=f(x)与直线MN及x轴围成的平面图形的面积S恒等于
求微分方程x(y2-1)dx+y(x2-1)dy=0的通解.
已知向量β可以由α1,α2,…,αs线性表出,证明:表示法唯一的充分必要条件是α1,α2,…,αs线性无关.
若αi1,αi2,…,αir与αj1,αj2,…,αjt都是α1,α2,…,αs的极大线性无关组,则r=t.
一条自动生产线连续生产n件产品不出故障的概率为,n=0,1,2,….假设产品的优质品率为p(0<P<1).如果各件产品是否为优质品相互独立.(Ⅰ)计算生产线在两次故障间共生产k件(k=0,1,2,…)优质品的概率;(Ⅱ)若已知在某两次故
曲线y=的渐近线方程为_______.
设A=,正交矩阵Q使得QTAQ为对角矩阵.若Q的第1列为(1,2,1)T,求a,Q.
随机试题
行政法律责任必须由有关()依照行政法律规范,包括实行规范和程序规范所规定的条件和程序予以追究。
原发性肝癌最常见的组织学类型为
A、吸收散射线B、吸收漏射线C、减少照射野D、抑制散射线E、吸收原发低能射线滤线栅的作用是
单位保证金存款按照保证金担保对象的不同,可以分为()。
A注册会计师拟实施穿行测试,不属于注册会计师执行穿行测试目的是()。
在上次考试中,老师出了一道非常古怪的难题,有86%的考生不及格。这次考试之前,王见明预测说:“根据上次考试情况,这次考试老师不一定会出那种难题了。”胡思明说:“这就是说这次考试老师肯定不出,那种难题了。太好了!”王见明说:“我不是这个意思。”下面哪
对于假想防卫,应当()。
下列数据结构中,能用二分法进行查找的是
ATheSpeechofthePresiderThepresidingovermeetingsisoneofthecommunicativeactivitiesatinternationalacademicconfer
A、TheychallengedSerenaWilliams’sethnicity.B、TheyfollowedtherolemodelofSerenaWilliams.C、Theyraisedanumberofcomp
最新回复
(
0
)