首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3. (1)求矩阵B,使A[α1,α2,α3]=[α1,α2,α3]B; (2)求A的特征值; (3)
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3. (1)求矩阵B,使A[α1,α2,α3]=[α1,α2,α3]B; (2)求A的特征值; (3)
admin
2019-07-19
44
问题
设A为3阶矩阵,α
1
,α
2
,α
3
是线性无关的3维列向量,且满足Aα
1
=α
1
+α
2
+α
3
,Aα
2
=2α
2
+α
3
,Aα
3
=2α
2
+3α
3
.
(1)求矩阵B,使A[α
1
,α
2
,α
3
]=[α
1
,α
2
,α
3
]B;
(2)求A的特征值;
(3)求一个可逆矩阵P,使得P
—1
AP为对角矩阵.
选项
答案
(1)由题设条件,有 A[α
1
,α
2
,α
3
]=[Aα
1
,Aα
2
,Aα
3
]=[α
1
+α
2
+α
3
,2α
2
+α
3
,2α
2
+α
3
] [*] (2)记矩阵C=[α
1
,α
2
,α
3
],则由(1)知AC=CB,又因α
1
,α
2
,α
3
是线性无关的3维列向量,知C为3阶可逆方阵,故得C
—1
AC=B,计算可得丑特征值为λ
1
=λ
2
=1,λ
3
=4,因相似矩阵有相同特征值,得A的特征值为λ
1
=λ
2
=1,λ
3
=4. (3)对于λ
1
=λ
2
=1,解方程组(E一B)x=0,得基础解系ξ
1
=(一1,1,0)
T
,ξ
2
=(一2,0,1)
T
;对应于λ
3
=4,解方程组(4E—B)x=0,得基础解系ξ
3
=(0,1,1)
T
.令矩阵 [*] 则有P
—1
AP=diag(1,1,4),故P为所求的可逆矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/Ffc4777K
0
考研数学一
相关试题推荐
下列可表示由双纽线(x2+y2)2=x2-y2)围成平面区域的面积的是
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵.证明:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n.
设随机变量X,Y相互独立,X~U(0,2),Y~E(1),则P(X+Y>1)等于().
设矩阵矩阵B=P—1A*P,求B+2E的特征值与特征向量,其中A*为A的伴随矩阵,E为3阶单位矩阵.
求曲线处的切线与y轴的夹角.
设向量组α1,α2,…,αm线性无关,β1可由α1,α2,…,αm线性表示,但β2不可由α1,α2,…,αm线性表示,则().
设随机变量X在区间[-1,1]上服从均匀分布,随机变量(Ⅰ)Y=,(Ⅱ)Y=,试分别求出DY与Cov(X,Y).
设随机变量X~B(1,),Y~E(1),且X与Y相互独立.记Z=(2X-1)Y,(Y,Z)的分布函数为F(y,z).求:(Ⅰ)Z的概率密度fZ(z);(Ⅱ)F(2,-1)的值.
设f(x,y)与f(x,y)均为可微函数,且φ’(x,y)≠0.已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是
将f(x)=arctanx展开成x的幂级数.
随机试题
电阻应变仪测量电桥(惠斯顿电桥)的主要功能和作用包括()。
光盘存储器主要由光盘盘片和光盘驱动器组成。()
一个数列不可能没有众数,也不可能没有中位数。()
期货公司申请金融期货全面结算业务资格应具备的条件包括()。
在一次面试中,考官提问“如果公司派你出差,而这时你妻子病重,你会怎么处理?”这是一个()问题。
YawningcanbeaproblemattheofficeforLindsayEierman,whichmakesherembarrassed.“I’veexplained,‘I’msorry,Ididn’tget
(96年)求级数的和.
设f(x)在区间[a,b]上存在一阶导数,且f'(A)≠f'(B).则必存在x0∈(a,b)使
Nearlytwo-thirdsofbusinessesintheUKwanttorecruitstaffwithforeignlanguageskills.Frenchisstillthemosthighlypr
TheincreasingAmericanizationofJapaneselifeisevidentinmanyways.Onesuchwayisthegrowingpopularityofcreditcards.
最新回复
(
0
)