首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知总体X的概率密度.f(χ)=(λ>0),X1,…,Xn为来自总体X的简单随机样本,Y=X2. (Ⅰ)求Y的期望EY(记EY为b); (Ⅱ)求λ的矩估计量和最大似然估计量; (Ⅲ)利用上述结果求b的最大似然估计量.
已知总体X的概率密度.f(χ)=(λ>0),X1,…,Xn为来自总体X的简单随机样本,Y=X2. (Ⅰ)求Y的期望EY(记EY为b); (Ⅱ)求λ的矩估计量和最大似然估计量; (Ⅲ)利用上述结果求b的最大似然估计量.
admin
2018-11-23
72
问题
已知总体X的概率密度.f(χ)=
(λ>0),X
1
,…,X
n
为来自总体X的简单随机样本,Y=X
2
.
(Ⅰ)求Y的期望EY(记EY为b);
(Ⅱ)求λ的矩估计量
和最大似然估计量
;
(Ⅲ)利用上述结果求b的最大似然估计量.
选项
答案
(Ⅰ)直接应用公式Eg(X)=∫
-∞
+∞
fg(χ)f(χ)dχ计算. [*] (Ⅱ)令μ=EX,其中 [*] 即μ=[*]+2,解得λ=[*],于是λ的矩估计量[*] 样本X
1
,…,X
n
的似然函数为 [*] 令[*]=0,解得λ=[*],故λ的最大似然估计量为[*]. (Ⅲ)由干b=2f(~1[*]+1)
2
+2(λ>0)是λ的单调连续函数,有单值反函数,根据最大似然估计的不变性得b的最大似然估计为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/D6M4777K
0
考研数学一
相关试题推荐
设x∈[0,a]时f(x)连续且f(x)>0(x∈(0,a]),又满足f(x)=,求f(x).
已知方程组的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T。试写出线性方程组的通解,并说明理由。
设f(x)在[a,b]上满足|f"(x)|≤2,且f(x)在(a,b)内取到最小值.证明:|f’(a)|+|f’(b)|≤2(b一a).
已知A是三阶实对称矩阵,满足A4+2A3+A2+2A=O,且秩r(A)=2,求矩阵A的全部特征值,并求秩r(A+E)。
由指数分布的密度函数导出指数分布的分布函数以及数学期望和方差.
已知X,Y为随机变量且P{X≥0,Y≥0}=,设A={max(X,Y)≥0},B={max(X,Y)<0,min(X,Y)<0},C={max(X,Y)≥0,min(X,Y)<0},则P(A)=_________,P(B)=_________,P(C)=_
设A,B都是三阶矩阵,A相似于B,且|E—A|=|E一2A|=|E一3A|=0,则|B-1+2E|=___________.
一个罐子里装有黑球和白球.黑、白球数之比为R:1,现有放回地一个接一个地抽球,直到抽到黑球为止,记X为所抽的白球数.这样做了n次以后,我们获得一组样本:X1,X2,…,Xn.基于此,求R的最大似然估计.
(01年)已知3阶矩阵A与3维向量x,使得向量组x,Ax,A2x线性无关,且满足A3x=3Ax-2A2x.(1)记P=(xAxA2x),求3阶矩阵B,使A=PBP-1;(2)计算行列式|A+E|.
有三个盒子,第一个盒子有4个红球1个黑球,第二个盒子有3个红球2个黑球,第三个盒子有2个红球3个黑球,如果任取一个盒子,从中任取3个球,以X表示红球个数.求所取到的红球数不少于2个的概率.
随机试题
美术的社会功能主要体现在三个方面,即_______、_______、_______。[天津2019]
设总体X~N(μ,σ2),x1,x2,x3,x4为来自总体X的样本,且服从自由度为________的χ2分布.
在餐馆吃的食物所含的脂肪、糖和盐的成分都很高。
未取得卫生许可证从事食品生产经营活动的,予以取缔,没收违法所得,并处以下数量的罚款
铸造卡环进入倒凹的深度一般不宜超过
试述债权人的撤销权。[浙工大2020年研]
对于水闸下游翼墙的单侧扩散角,下列说法正确的是()。
证券公司营业部必须在营业场所发布股份转让的价格信息,转让日当天的价格信息发布内容有()。
商业银行设立的分支行是()。
校场口血案
最新回复
(
0
)