首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2004年] 设矩阵A=,矩阵B满足ABA*=2BA*+E,其中A*为A的伴随矩阵,E是单位矩阵,则∣B∣=_________.
[2004年] 设矩阵A=,矩阵B满足ABA*=2BA*+E,其中A*为A的伴随矩阵,E是单位矩阵,则∣B∣=_________.
admin
2019-05-10
22
问题
[2004年] 设矩阵A=
,矩阵B满足ABA
*
=2BA
*
+E,其中A
*
为A的伴随矩阵,E是单位矩阵,则∣B∣=_________.
选项
答案
在方程两端左乘A,消掉A
*
,再利用命题2.2.1.6求之.也可将B所满足的等式整理使得等号两端都为矩阵相乘的形式,然后再取行列式求之. 解一 ABA
*
A=2BA
*
A+A,即3AB=6B+A,又∣A∣=A
*
A=3,则 AB一2B-(1/3)A=0, a=一1/3, b=一2, c=0. 由命题2.2.1.6得到 (A+bE)(B+aE)=(A一2E)(B一(1/3)E)=(ab—c)E=(2/3)E, 所以 [*] ∣B∣=[(1/3)(1/3)一(2/3)(2/3)](一1/3)=(一3/9)(一1/3)=1/9. 解二 (A一2E)BA
*
=E,B=(A一2E)
-1
(A
*
)
-1
,故∣B∣=∣A
*
∣
-1
∣A一2E∣
-1
,由∣A∣=[*]=3知,∣A
*
∣=∣A
2
∣=9,∣A一2E∣=[*]=1.于是∣B∣=[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/FjV4777K
0
考研数学二
相关试题推荐
设A为n阶实对称矩阵,P是n阶可逆矩阵,已知n维列向量α是A的属于特征值λ的特征向量,则矩阵(P一1AP)T属于特征值λ的特征向量是()
证明:当χ>0时,(χ2-1)lnx≥(χ-1)2.
设f(χ)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b),且f(χ)在[a,b]上不恒为常数.证明:存在ξ,η∈(a,b),使得f′(ξ)>0,f′(η)<0.
已知0是A=的特征值,求a和A的其他特征值及线性无关的特征向量.
设三阶矩阵A的特征值为2,3,λ,若行列式|2A|=-48,则λ=_______.
设A=,若齐次方程组AX=0的任一非零解均可用α线性表示,则a=().
设f(χ)可导,y=f(cos2χ),当χ=-处取增量△χ=-0.2时,△y的线性部分为0.2,求f′().
设A为,n阶矩阵,若Ak-1α≠0,而Akα=0.证明:向量组α,Aα,…,Ak-1α线性无关.
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
设α1,αn为n个m维向量,且m<n.证明:α1,…,αn线性相关.
随机试题
下列杂剧作品属于元杂剧作家宫天挺的代表作的是()
最适合行脾切除治疗的贫血是
细胞需要直接消耗能量的电活动过程是
患者,男性,60岁,腰痛入院,血红蛋白60g/L,尿蛋白2g/L,本周蛋白(+)。其蛋白尿类型为
A.蓝紫光疗法B.紫外线疗法C.超短波治疗D.光敏疗法E.超声波疗法具有抗佝偻病作用的物理治疗为
下列对甲氧苄啶的叙述,错误的是
当企业处于减损价值型现金短缺时,企业应采取的战略是()。
在下列标识符中,不属于文件流类的标识符是
•Youwillhearthreetelephoneconversationsormessages.•Writeoneortwowordsoranumberinthenumberedspacesontheno
TheNaziregimeis______ofallthemeandprincipleexceptappetiteandracialdomination.
最新回复
(
0
)