首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2004年] 设矩阵A=,矩阵B满足ABA*=2BA*+E,其中A*为A的伴随矩阵,E是单位矩阵,则∣B∣=_________.
[2004年] 设矩阵A=,矩阵B满足ABA*=2BA*+E,其中A*为A的伴随矩阵,E是单位矩阵,则∣B∣=_________.
admin
2019-05-10
40
问题
[2004年] 设矩阵A=
,矩阵B满足ABA
*
=2BA
*
+E,其中A
*
为A的伴随矩阵,E是单位矩阵,则∣B∣=_________.
选项
答案
在方程两端左乘A,消掉A
*
,再利用命题2.2.1.6求之.也可将B所满足的等式整理使得等号两端都为矩阵相乘的形式,然后再取行列式求之. 解一 ABA
*
A=2BA
*
A+A,即3AB=6B+A,又∣A∣=A
*
A=3,则 AB一2B-(1/3)A=0, a=一1/3, b=一2, c=0. 由命题2.2.1.6得到 (A+bE)(B+aE)=(A一2E)(B一(1/3)E)=(ab—c)E=(2/3)E, 所以 [*] ∣B∣=[(1/3)(1/3)一(2/3)(2/3)](一1/3)=(一3/9)(一1/3)=1/9. 解二 (A一2E)BA
*
=E,B=(A一2E)
-1
(A
*
)
-1
,故∣B∣=∣A
*
∣
-1
∣A一2E∣
-1
,由∣A∣=[*]=3知,∣A
*
∣=∣A
2
∣=9,∣A一2E∣=[*]=1.于是∣B∣=[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/FjV4777K
0
考研数学二
相关试题推荐
设A为n阶矩阵,AT是A的转置矩阵,对于线性方程组(I)Ax=0和(Ⅱ)ATAx=0,必有()
设f(χ)在χ0的邻域内四阶可导,且|f(4)(χ)|≤M(M>0).证明:对此邻域内任一异于χ0的点χ,有其中χ′为χ关于χ0的对称点.
证明:连续函数取绝对值后函数仍保持连续性,举例说明可导函数取绝对值不一定保持可导性.
设矩阵A满足(2E-C-1B)AT=C-1,且求矩阵A.
设f(χ),g(χ)在[a,b]上连续,在(a,b)内可导,且g′(χ)≠0.证明:存在ξ∈(a,b),使得
设A=,已知A有三个线性无关的特征向量且λ=2为矩阵A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
设a是整数,若矩阵A=的伴随矩阵A*的特征值是4,-14,-14.求正交矩阵Q,使QTQ为对角矩阵.
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
计算行列式
随机试题
下列行为中构成专利侵权的是()。
从造字法来看,“明”是_____字。
女,65岁,因头痛、右侧肢体无力7天入院。胸片:右肺可见圆形病灶,头部CT提示脑转移瘤,肿瘤周围脑水肿明显。本例瘤周水肿系
某研究者收集了2种疾病患者痰液内嗜酸性粒细胞的检查结果,整理成下表:若要比较2种疾病患者痰液内的嗜酸性粒细胞数是否有差别应选择
在下列关于财务管理“引导原则”的说法中,错误的是()。
关于老年人的权益,尤其是精神方面的保护,最近进行了立法,谈谈对这一问题的看法。
关于香港特别行政区的政府,说法正确的有()。
Whyare"HowTo"booksingreatdemandintheUnitedStates?
Whatistherelationshipbetweenthetwopersons?
A—thechiefcoachB—thechiefrefereeC—thedefenderD—centreforwardE—thesecon
最新回复
(
0
)