首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数a1﹤a2﹤...﹤an,且函数f(x)在[a1,an]f(a1)=f(a2)=...=f(an)=0.证明:存在ε∈(a1,an),使得.
设函数a1﹤a2﹤...﹤an,且函数f(x)在[a1,an]f(a1)=f(a2)=...=f(an)=0.证明:存在ε∈(a1,an),使得.
admin
2019-09-23
56
问题
设函数a
1
﹤a
2
﹤...﹤a
n
,且函数f(x)在[a
1
,a
n
]f(a
1
)=f(a
2
)=...=f(a
n
)=0.证明:存在ε∈(a
1
,a
n
),使得
.
选项
答案
证明:当c=a
i
(i=1,2,...,n)时,对任意的ε∈(a
1
,a
n
),结论成立; 设c为异于a
1
,a
2
,...a
n
的数,不妨设a
1
<c<a
2
<...<a
n
,令[*], 构造辅助函数Φ(x)=f(x)-k(x-a
1
)(x-a
2
)...(x-a
n
),显然Φ(x)在[a
1
,a
n
]上n阶可导,且Φ(a
1
)=Φ(c)=Φ(a
2
)=...=Φ(a
n
)=0,由罗尔定理,存在[*] [*]在(a
1
,a
n
)内至少有n个不同零点,重复使用罗尔定理,则Φ
n-1
(x)在(a
1
,a
n
)内至少有两个不同零点,设为c
1
,c
2
∈(a
1
,a
n
),使得Φ
n-1
(c
1
)=Φ
n-1
(c
1
)=0,再由罗尔定理,存在ε∈(c
1
,c
2
)[*](a
1
,a
n
),使得Φ
(n)
(ε)=0,而Φ
(n)
(x)=f
(n)
(x)-n!k,所以f
(n)
(ε)=n!k,从而有 [*].
解析
转载请注明原文地址:https://kaotiyun.com/show/FmA4777K
0
考研数学二
相关试题推荐
设f(χ)在[a,b]连续,在(a,b)可导,又b>a>0,求证:ξ,η∈(a,b)使得f′(ξ)=ηf′(η).
设二次型f(x1,x2,x3)=x12+x22+x32一2x1x2—2x1x3+2ax2x3通过正交变换化为标准形2y12+2y22+by32。求常数a,b及所用的正交变换矩阵Q;
设x→0时,f(x)=是等价的无穷小量,试求常数a和k的值.
设二次型f(x1,x2,x3)=x12+x22+x32-2x1x2-2x1x3+2ax2x3通过正交变换化为标准形f=2y12+2y22+by32。求常数a,b及所用的正交变换矩阵Q;
设xOy平面第一象限中有曲线Γ:y=y(x),过点A(0,—1),y′(x)>0.又M(x,y)为Γ上任意一点,满足:弧段的长度与点M处Γ的切线在x轴上的截距之差为—1.导出y(x)满足的微分方程和初始条件.
设函数f(χ,y)可微,=-f(χ,y),f(0,)=1,且=ecoty,求f(χ,y).
(2004年试题,一)设则f(x)的间断点为x=_________.
设f(x)在R上连续,且f(x)≠0,φ(x)在R上有定义,且有间断点,则下列结论中正确的个数是()①φ[f(x)]必有间断点;②[φ(x)]2必有间断点;③f(φ(x)]没有间断点。
设f(x,y)在点O(0,0)的某邻域U内连续,且试讨论f(0,0)是否为f(x,y)的极值?是极大值还是极小值?
设且f’(0)存在,求a,b.
随机试题
实施知识管理的基础是知识的()。
下列计量单位中,既适合工程量清单项目又适合基础定额项目的是()。
住宅电梯多台单侧排列时,侯厅深度应等于或大于多少倍电梯群中最大轿箱深度?()
商业银行在计量操作风险监管资本时,操作风险的缓释因素不包括保险理赔收入。()
“依山傍水”小区建成后,业主们决定通过业主大会选举业主委员会。根据物权法律制度的规定,下列关于业主大会选举业主委员会表决通过标准的表述中,正确的是()。
我们要______________全社会诚信观念。诚信缺损在金融领域突出表现为道德风险。道德风险加剧了金融资产的运行风险,是金融领域出现不良资产的重要______________。我们要对全社会进行金融安全知识教育,培育各级政府、企业和社会公众的诚信观念、
水肿型营养不良的临床表现有()。[浙江省2011年三级真题]
在教学活动前,教师为了解学生的现有水平和个别差异以及安排教学所进行的评价称之为()。
-9,-2,17,54,115,()
sizeof(float)是
最新回复
(
0
)