首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,AT是A的转置矩阵,对于线性方程组(Ⅰ)Ax=0和(Ⅱ)ATAx=0,必有( )
设A为n阶矩阵,AT是A的转置矩阵,对于线性方程组(Ⅰ)Ax=0和(Ⅱ)ATAx=0,必有( )
admin
2019-01-06
80
问题
设A为n阶矩阵,A
T
是A的转置矩阵,对于线性方程组(Ⅰ)Ax=0和(Ⅱ)A
T
Ax=0,必有( )
选项
A、(I)的解是(Ⅱ)的解,(Ⅱ)的解也是(Ⅰ)的解.
B、(I)的解是(Ⅱ)的解,(Ⅱ)的解不是(Ⅰ)的解.
C、(Ⅱ)的解是(Ⅰ)的解,(Ⅰ)的解不是(Ⅱ)的解.
D、(Ⅱ)的解不是(Ⅰ)的解,(Ⅰ)的解也不是(Ⅱ)的解.
答案
A
解析
如果α是(Ⅰ)的解,有Aα=0,可得
A
T
Aα=A
T
(Aα)=A
T
0=0,
即α是(Ⅱ)的解.故(Ⅰ)的解必是(Ⅱ)的解.
反之,若α是(Ⅱ)的解,有A
T
Aα=0,用α
T
左乘可得
α
T
(A
T
Aα)=(α
T
A
T
)(Aα)=(Aα)
T
(Aα
T
)=α
T
0=0,
若设Aα=(b
1
,b
2
,…,b
n
),那么
即Aα=0.亦即α是(Ⅰ)的解.因此(Ⅱ)的解也必是(Ⅰ)的解.所以应选A.
转载请注明原文地址:https://kaotiyun.com/show/FpW4777K
0
考研数学三
相关试题推荐
设A为三阶矩阵,A的特征值为λ1=λ2=1,λ3=3,对应的线性无关的特征向量为α1,α2,α3,令P1=(α1+α3,α2一α3,α3),则P1一1AP1=().
确定常数a和b的值,使得
已知A是3阶不可逆矩阵,一1和2是A的特征值,B=A2一A一2E,求B的特征值,并问B能否相似对角化,并说明理由.
已知ξ1=(一3,2,0)T,ξ2=(一1,0,一2)T是方程组的两个解,则此方程组的通解是__________.
(90年)求微分方程y′+ycosχ=(lnχ)e-sinχ的通解.
(12年)由曲线y=和直线y=χ及y=4χ在第一象限中围成的平面图形的面积为_______.
要使都是线性方程组AX=0的解,只要系数矩阵A为【】
设f(x)在(一∞,+∞)内连续,以T为周期,令F(x)=∫0xf(t)dt.求证:(1)F(x)=kx+φ(x),其中k为某常数,φ(x)是以T为周期的周期函数.(2)∫0Tf(x)dx.
设则().
(2008年)设f(x)是周期为2的连续函数。(I)证明对任意实数t,有∫tt+2f(x)dx=∫02f(x)dx;(Ⅱ)证明G(x)=∫0x[2f(t)一∫tt+2f(s)ds]dt是周期为2的周期函数。
随机试题
TheAustralianpoliticaldivisionbordersaredrawn______.()
根据水利工程施工项目招标投标有关规定,当投标人投标文件中出现用数字表示的数额与用文字表示的数额不一致时,除招标文件另有约定外,以()为准,调整后的报价经投标人确认后产生约束力。
横道图法是分析建设工程项目施工成本偏差的常用方法,其特点包括()。
()是品牌的基础和生命,是使顾客信任和追随的根本原因。
曾提出过“山水浑厚,草木华滋”的绘画美学思想的画家是()。
公安机关是对违法犯罪行为施加影响最普遍、最直接、最及时的力量。()
《劳动法》第72条规定,用人单位和劳动者()依法参加社会保险,缴纳社会保险费。
当前。很多假冒产品充斥于市场之中,也出现了很多以打假为职业的人,专门知假买假,媒体称之为“职业打假人”。对于“职业打假人"的行为,有人认为他们维护了消费者的利益;但也有人认为他们极大地浪费了公共行政资源。对此,你怎么看?
古希腊古罗马是西方文明的摇篮,西方哲学、美学及各种艺术形式始于此,西方的音乐文化也由此开始。这个时期出现过最早基于口头传唱的希腊长诗,如《伊利亚特》和《奥德赛》;数学家毕达哥拉斯揭示了音乐与数学之间的关系:著名的三大悲剧家埃斯库罗斯、欧里庇得斯、索福克勒斯
A、13.B、17.C、30.D、15.B
最新回复
(
0
)