首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且 2f(0)=∫02f(x)dx=f(2)+f(3) 证明存在η∈(0,2),使得f(η)=f(0).
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且 2f(0)=∫02f(x)dx=f(2)+f(3) 证明存在η∈(0,2),使得f(η)=f(0).
admin
2022-09-05
63
问题
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且
2f(0)=∫
0
2
f(x)dx=f(2)+f(3)
证明存在η∈(0,2),使得f(η)=f(0).
选项
答案
设F(x)=∫
0
x
f(t)dt(0≤x≤2),则 ∫
0
2
f(x)dx=F(2)-F(0) 根据拉格朗日中值定理,存在η∈(0,2)使得F(2)-F(0)=2F’(η)=2f(η)即 ∫
0
2
f(x)dx=2f(η) 由题设知∫
0
2
f(x)dx=2f(0),故f(η)=f(0).
解析
转载请注明原文地址:https://kaotiyun.com/show/FrR4777K
0
考研数学三
相关试题推荐
设F(x)=esintsintdt,则F(x)().
设A是n阶矩阵,下列命题错误的是().
证明:用二重积分证明e-x2dx=.
设A=,B=,则A与B().
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且=0,又f(2)=2f(x)dx,证明:存在ξ∈(0,2),使得f’(ξ)+f”(ξ)=0.
设随机变量X~U[-1,1],则随机变量U=arcsinX,V=arccosX的相关系数为().
设线性方程组已知(1,-1,1,-1)T是该方程组的一个解,试求:该方程组满足x2=x3的全部解。
设函数设数列{xn}满足证明存在,并求此极限.
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.(Ⅰ)计算PTDP,其中P=(Ⅱ)利用(Ⅰ)的结果判断矩阵B-CTA-1C是否为正定矩阵,并证明你的结论.
求极限
随机试题
下列各项中,能作为短期偿债能力辅助指标的是
原发性胆汁淤积性肝硬化最常见的早期症状为
2012年,某市受理专利申请量82682件,比上年增长3.1%。其中,发明专利37139件,增长15.5%。专利授权量51508件,增长7.4%。其中,发明专利11379件,增长24.2%。2012年全市有高新技术企业4312家,技术先进型服务企业281家
根据《企业会计准则第15号——建造合同》,下列费用中,不应计入工程成本的是()。
()接受承运人的委托,代理与船舶有关的一切业务的人。
可持续增长率可以表达为()。
养花专业户张某为防止花被偷,在花房周围私拉电网。一日晚,李某偷花不慎触电,经送医院抢救,不治身亡。张某对这种结果的主观心理态度是()。
细胞凋亡和程序性坏死的主要区别包括()。
犯罪的主观方面包括()。
Giventhechoice,youngerprofessionalsaremostinterestedinworkingattechcompanieslikeAppleandgovernmentagencieslike
最新回复
(
0
)