首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1,a2,…,an为n个n维线性无关的向量,A是n阶矩阵.证明:Aa1,Aa2,…,Aan线性无关的充分必要条件是A可逆.
设a1,a2,…,an为n个n维线性无关的向量,A是n阶矩阵.证明:Aa1,Aa2,…,Aan线性无关的充分必要条件是A可逆.
admin
2019-11-25
40
问题
设a
1
,a
2
,…,a
n
为n个n维线性无关的向量,A是n阶矩阵.证明:Aa
1
,Aa
2
,…,Aa
n
线性无关的充分必要条件是A可逆.
选项
答案
令B=(a
1
,a
2
,…,a
n
),因为a
1
,a
2
,…,a
n
为n个n维线性无关的向量,所以r(B)=n.(Aa
1
,Aa
2
,…,Aa
n
)=AB,因为,r(AB)=r(A),所以Aa
1
,Aa
2
,…,Aa
n
线性无关的充分必要条件是r(A)=n,即A可逆.
解析
转载请注明原文地址:https://kaotiyun.com/show/m9D4777K
0
考研数学三
相关试题推荐
设Ik=sinxdx(k=1,2,3),则有()
设f(x)在[a,b]上连续,且g(x)>0.证明:存在一点ξ∈[a,b],使∫abf(x)g(x)dx=f(ξ)∫abg(x)dx.
设f(x)在[a,b]上连续且严格单调增加.证明:(a+b)∫abf(x)dx<2∫abxf(x)dx.
设a,b均为常数,a>一2且a≠0,求a,b为何值时,有
设函数y(x)(x≥0)二阶可导且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2
设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.(1)计算并化简PQ;(2)证明:矩阵Q可逆的充分必要条件是αTA-1α≠b.
微分方程y"一y=ex+1的一个特解应具有形式(其中a,b为常数)()
设函数y(x)在[a,b]上连续,在(a,b)内二次可导,且满足y’’(x)+p(x)y’(x)-q(x)y(x)=f(x),y(a)=y(b)=0,其中函数p(x),q(x)与f(x)都在[a,b]上连续,且存在常数q0>0使得q(x)≥q0,存在
设α1=(1,3,5,-1)T,α2=(2,7,a,4)T,α3=(5,17,-1,7)T。(Ⅰ)若α1,α2,α3线性相关,求a;(Ⅱ)当a=3时,求与α1,α2,α3都正交的非零向量α4;(Ⅲ)设a=3,α4是与α1,α2,α3都正交的非零向量,
下列矩阵中不相似于对角矩阵的是()。
随机试题
对互斥方案进行经济比选的动态分析方法有( )。
运用()估算投资,方法比较简单,但由于没有考虑项目(或装置)的规模大小、设备材质的影响以及不同地区自然、地理条件差异的影响,所以估算的准确度不高。
如果你的领导是位斤斤计较、爱批评人的人,你还会对他提合理化的建议吗?
根据资料,回答下列问题:2012年该市文化产业总产值比2008年大约提高了()个百分点。
简述大赦与特赦的区别。
20世纪60年代,加州大学伯克利分校进行了一系列关于小鼠认知能力的实验。在实验中,一组小鼠被放在摆满各种玩具、转轮和隧道的笼子里,另一组小鼠则在空无一物的笼子里长大。实验结果显示,前一组小鼠大脑的体积更大,认知能力也显著高于后一组。研究人员因此作出推论:充
“行之明觉精察处便是知,知之真切笃实处便是行”,这个观点的错误是
设χ为3维单位列向量,E为3阶单位矩阵,则矩阵E-χχT的秩为_______.
在Excel的A1单元格中输入函数“=INT(-19.4.)”,按回车键后,A1单元格中的值为()。
FacingtheEnemiesWithinWearenotbornwithcourage,butneitherarewebornwithfear.Maybesomeofyourfearsarebrou
最新回复
(
0
)