首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=α2+α3,Aα3=2α2+3α3. 求一个可逆矩阵P,使得P—1AP为对角矩阵.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=α2+α3,Aα3=2α2+3α3. 求一个可逆矩阵P,使得P—1AP为对角矩阵.
admin
2018-08-03
59
问题
设A为3阶矩阵,α
1
,α
2
,α
3
是线性无关的3维列向量,且满足Aα
1
=α
1
+α
2
+α
3
,Aα
2
=α
2
+α
3
,Aα
3
=2α
2
+3α
3
.
求一个可逆矩阵P,使得P
—1
AP为对角矩阵.
选项
答案
对于λ
1
=λ
2
=1,解方程组(E一B)x=0,得基础解系ξ
1
=(一1.1,0)
T
,ξ
2
=(一2,0,1)
T
;对应于λ
3
=4,解方程组(4E—B)x=0,得基础解系己=(0,1,1)
T
.令矩阵 Q=[ξ
1
ξ
2
ξ
3
]=[*] 则有 Q
—1
B Q=[*] 因Q
—1
BQ=Q
—1
C
—1
ACQ=(CO)
—1
A(CQ),记矩阵 P—CQ一[α
1
,α
2
,α
3
][*] =[一α
1
+α
2
,一2α
1
+α
3
,α
2
+α
3
] 则有P
—1
AP=diag(1,1,4),故P为所求的可逆矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/Frg4777K
0
考研数学一
相关试题推荐
当x>0时,证明:
设f(x)在[0,+∞)内可导且f(0)=1,f’(x)<f(x)(x>0).证明:f(x)<e(x>0).
设总体X在区间(0,θ)内服从均匀分布,X1,X2,X3是来自总体的简单随机样本.证明:都是参数θ的无偏估计量,试比较其有效性.
证明:
设f(x)在[0,1]上有定义,且exf(x)与e-f(x)在[0,1]上单调增加.证明:f(x)在[0,1]上连续.
设A,B都是n阶可逆矩阵,则().
设X1,X2,…,X12是取自总体X的一个简单随机样本,EX=μ,DX=σ.记Y1=X1+…+X8,Y2=X5+…+X12,求Y1与Y2的相关系数.
设二维随机变量(X1,Y1)与(X2,Y2)的联合概率密度分别为求:(Ⅰ)常数K1,K2的值;(Ⅱ)Xi,Yi(i=1,2)的边缘概率密度;(Ⅲ)P{Xi>2Yi}(i=1,2).
证明α1,α2,…,αs(其中α1≠0)线性相关的充分必要条件是存在一个αi(1<i≤s)能由它前面的那些向量α1,α2,…,αi-1线性表出.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3.(Ⅰ)求矩阵A的特征值;(Ⅱ)求可逆矩阵P使P-1AP=A.
随机试题
汉乐府民歌《陌上桑》主要讲述了()的故事。
TV显示器上显示的图像对比度取决于
王某,28岁,未产妇,述说平素月经规律,28天一次,每次持续3~4次。其末次月经是2月11日,距今已有8周,现病人感觉疲乏,乳房触痛明显。为了进一步确诊其是否怀孕,下列可以提供确诊依据的检查是()
基金管理人的高级管理层负责制定书面的合规政策,适时修订合规政策,报经()审议批准后传达给全体员工定期评价各项合规政策和执行状况。
在我国国内生产总值巾,公有制经济所占的比例,1978年为99.1%,1997年为75.8%;而非公有制经济所占的比例,1978年为0.9%,1997年为24.2%。这表明,改革开放以来,我国()。
买断代理方式的特点有()。
下列属于公安机关人民警察内务建设任务的有()。
第二十九届奥运会2008年8月8日~24日在北京成功举行。中国体育代表团总奖牌数为()枚。
Refertotheexhibit.Subnet10.1.3.0/24isunknowntorouterRTB.WhichroutercommandwillpreventrouterRTBfromdroppinga
下列叙述中正确的是
最新回复
(
0
)