首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是4×5矩阵,且A的行向量组线性无关,则下列说法错误的是 ( )
设A是4×5矩阵,且A的行向量组线性无关,则下列说法错误的是 ( )
admin
2019-02-01
85
问题
设A是4×5矩阵,且A的行向量组线性无关,则下列说法错误的是 ( )
选项
A、A
T
X=0只有零解
B、A
T
AX=0必有无穷多解
C、对任意的b,A
T
X=b有唯一解
D、对任意的b,AX=b有无穷多解
答案
C
解析
r(A)=4,A
T
是5×4矩阵,方程组A
T
X=b,对任意的b,方程组若有解,则必有唯一解,但可能无解,即可能r(A
T
)=r(A)=4≠r(EA
T
|b])=5,而使方程组无解.
其余(A),(B),(D)正确.
转载请注明原文地址:https://kaotiyun.com/show/Fuj4777K
0
考研数学二
相关试题推荐
已知f(x)是周期为5的连续函数,它在x=0的某邻域内满足关系式:f(1+sinx)一3f(1一sinx)=8x+α(x),其中α(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求y=f(x)在点(6,f(6))处的切线方程.
函数f(x,y,z)=一2x2在x2一y2一2z2=2条件下的极大值是___________.
交换累次积分I的积分次序:I=.
设线性方程组λ为何值时,方程组有解,有解时,求出所有的解.
设向量组(I)α1,α2,…,αs线性无关,(II)β1,β2,…,βs线性无关,且αi(i=1,2,…,s)不能由(II)β1,β2,…,βs线性表出,βi(i=1,2,…,t)不能由(I)α1,α2,…,αs线性表出,则向量组α1,α2,…,αs,β1
设向量组α1=[α11,α21,…,αn1]T,α2=[α12,α22,…,αn2]T,…,αs=[α1s,α2s,…,αns]T,证明:向量组α1,α2,…,αs线性相关(线性无关)的充要条件是齐次线性方程组有非零解(有唯一零解).
设向量组(I)与向量组(Ⅱ),若(I)可由(Ⅱ)线性表示,且r(I)=r(Ⅱ)=r,证明:(I)与(Ⅱ)等价.
设函数x=x(y)由方程x(y—x)2=y所确定,试求不定积分.
设f(u,v)具有二阶连续偏导数,且满足f′u(u,v)+f′v(u,v)=uv求y=e-2χf(χ,χ)所满足的一阶微分方程_______,并求其通解为_______.
求2y-x=(x-y)ln(x-y)确定的函数y=y(x)的微分dy.
随机试题
患儿男,4岁8个月。因发热2天,左侧肢体瘫痪1天入院。2天前无明显诱因发热,体温40.3℃,伴头痛、呕吐2次,为胃内容物,非喷射性,于外院输液对症治疗,体温降至正常,入院前1天,患儿出现左侧肢体无力,不能站立,无发热及抽搐。查体:双下肢对称分布针尖大小紫红
2013年12月31日,甲公司某项固定资产计提减值准备前的账面价值为1000万元,公允价值为980万元,预计处置费用为80万元,预计未来现金流量的现值为1050万元。2013年12月31日,甲公司应对该项固定资产计提的减值准备为()万元。(201
下列各项中,年度终了需要转入“利润分配——未分配利润”科目的有()。
文书校对的方法有()。
400米全力跑,运动肌肉的主要供能系统为()
人们常说“品牌瓶装水品质更好”。美国广播电视网做了一个口味测试,把不同品牌的瓶装水和纽约市中心的公用饮用水装入同样的杯子中,要求人们对这些水进行品尝并评定等级。结果评价最低的是一种品质受到广泛认可的某品牌瓶装水。以下最能解释以上矛盾现象的是()。
下列结构中为非线性结构的是
在Java中,属于整数类型变量的是()。
74℃
Lookatthestatementsbelowandatthefiveextractsfromanarticleaboutlossofcontroldownwardinmanagement.Whicharticl
最新回复
(
0
)