首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵. 利用(1)的结果判断矩阵B一CTA一1C是否为正定矩阵,并证明你的结论.
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵. 利用(1)的结果判断矩阵B一CTA一1C是否为正定矩阵,并证明你的结论.
admin
2016-01-11
57
问题
设
为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.
利用(1)的结果判断矩阵B一C
T
A
一1
C是否为正定矩阵,并证明你的结论.
选项
答案
由(1)的结果知,矩阵D合同于矩阵[*]又D为正定矩阵,可知矩阵M为正定矩阵,从而M的各阶顺序主子式大于零,于是B一C
T
A
一1
c的各阶顺序主子式也大于零.因矩阵M为对称矩阵,故B一C
T
A
一1
C为对称矩阵,故B一C
T
A
一1
C为正定矩阵.
解析
本题主要考查正定矩阵的判定以及分块矩阵的运算.首先求出P
T
,然后利用分块矩阵的运算法则求出P
T
DP,再证明B~C
T
A
一1
C为正定矩阵.
转载请注明原文地址:https://kaotiyun.com/show/Fv34777K
0
考研数学二
相关试题推荐
设A是m×n阶矩阵,B是n×m阶矩阵,则().
A=求a,b及可逆矩阵P,使得P-1AP=B.
(1)若A可逆且A~B,证明:A*~B*;(2)若A~B,证明:存在可逆矩阵P,使得AP~BP.
设二维非零向量α不是二阶方阵A的特征向量.(1)证明:α,Aα线性无关;(2)若A2α+Aα-6α=0,求A的特征值,讨论A可否对角化;
设A为m阶正定矩阵,B为m×n阶实矩阵.证明:BTAB正定的充分必要条件是r(B)=n.
设P为可逆矩阵,A=PTP.证明:A是正定矩阵.
设随机变量X的慨率密度为f(x),EX存在,若对常数a,有f(a+x)=f(a-x),则EX=()
设A是3阶实对称矩阵,二次型f(x1,x2,x3)=xTAx经正交变换x=Qy后的标准形为y12+y22-y32,则二次型g(x1,x2,x3)=xTAA*x经可逆线性变换x=Py后的规范形为()
设某企业生产一种产品,其成本C(Q)=-16Q2+100Q+1000,平均收益=a一(a>0,0<b<24),当边际收益MR=44,需求价格弹性Ep=时获得最大利润,求获得最大利润时产品的产量及常数a与b的值.
随机试题
设施内的相对湿度晴天比外界低
Cushing综合征中最常见的类型为:()
医院药学部门应当在谁的领导下开展工作
手部骨间肌、小指外展肌肉萎缩无力是由于三角肌萎缩是由于
单位卡不得用于5万元以上的商品交易、劳务供应款项的结算。()
假定在样本期内无风险利率为6%,市场资产组合的平均收益率为18%;基金A的平均收益率为17.6%,贝塔值为1.2;基金B的平均收益率为17.5%,贝塔值为1.0;基金C的平均收益率为17.4%,贝塔值为0.8。那么用詹森指数衡量,绩效最优的基金是(
关于工资差别的说法。正确的有()。
企业年度财务会计报告不包括现金流量表。()
逮捕,是指公安机关、人民检察院和人民法院为防止被告人逃避或者阻碍侦查和审判,或继续危害社会,依法剥夺其人身自由的强制方法。根据以上定义,下列属于逮捕的是( )。
A、Thewholepaper.B、Thepartsthatinteresther.C、Thenewssectiononly.D、Thebusinesssectiononly.B
最新回复
(
0
)