首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵. 利用(1)的结果判断矩阵B一CTA一1C是否为正定矩阵,并证明你的结论.
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵. 利用(1)的结果判断矩阵B一CTA一1C是否为正定矩阵,并证明你的结论.
admin
2016-01-11
72
问题
设
为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.
利用(1)的结果判断矩阵B一C
T
A
一1
C是否为正定矩阵,并证明你的结论.
选项
答案
由(1)的结果知,矩阵D合同于矩阵[*]又D为正定矩阵,可知矩阵M为正定矩阵,从而M的各阶顺序主子式大于零,于是B一C
T
A
一1
c的各阶顺序主子式也大于零.因矩阵M为对称矩阵,故B一C
T
A
一1
C为对称矩阵,故B一C
T
A
一1
C为正定矩阵.
解析
本题主要考查正定矩阵的判定以及分块矩阵的运算.首先求出P
T
,然后利用分块矩阵的运算法则求出P
T
DP,再证明B~C
T
A
一1
C为正定矩阵.
转载请注明原文地址:https://kaotiyun.com/show/Fv34777K
0
考研数学二
相关试题推荐
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
设A是m×n阶矩阵,B为s×n阶矩阵,则方程组BX=0与ABX=0同解的充分条件是().
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=-ξ1+2ξ2+2ξ3,Aξ2=2ξ1-ξ2-2ξ3,Aξ3=2ξ1-2ξ1-2ξ2-ξ3,(1)求矩阵A的全部特征值;(2)求|A*+2E|.
设A为n阶正定矩阵.证明:对任意的可逆矩阵P,PTAP为正定矩阵.
设a1=(a1,a2,a3)T,a2=(b1,b2,b3)T,a3=(c1,c2,c3)T则三条直线a1x+b1y+c1=0,a2x+b2y+c2=0,a3x+b3y+c3=0相交于一点的充分必要条件是().
函数y=在区间[0,2]上的平均值为__________.
设二次型f(x1,x2,x3)=XTAX经过正交变换化为标准形f=2y12-y22-y32,又A*α=α,其中α=(1,1,﹣1)T.(Ⅰ)求矩阵A;(Ⅱ)求正交矩阵Q,使得经过正交变换X=QY,二次型f(x1,x2,x3)=XTAX化为标准形.
设f(x)为微分方程yˊ-xy=g(x)满足y(0)=1的解,其中g(x)=,则有()
设A为3阶实对称矩阵,β=(3,3,3)T,方程组Ax=β的通解为k1(-1,2,-1)T+k2(0,-1,1)T+(1,1,1)T(k1,k2为任意常数).求A的特征值和特征向量;
设某企业生产一种产品,其成本C(Q)=-16Q2+100Q+1000,平均收益=a一(a>0,0<b<24),当边际收益MR=44,需求价格弹性Ep=时获得最大利润,求获得最大利润时产品的产量及常数a与b的值.
随机试题
边际贡献率的确定公式可表示为
川崎病的发病年龄以
以下不是咯血诱发因素的是()
A.静脉性充血B.肺动脉栓塞C.心肌梗死D.血栓形成E.出血股静脉血栓脱落可引起
A.高血压病1级B.高血压病2级C.高血压病3级D.高血压危象E.高血压脑病血压持续在21.3/12.6kPa(160/95mmHg)以上,眼底动脉普遍狭窄,属于()。
【2009—3】题24~25:某厂根据负荷发展需要,拟新建一座110/10kV变电站,用于厂区内10kV负荷的供电,变电所基本情况如下:(1)电源取自地区110kV电网(无限大电源容量)。(2)主变采用两台容量为31.5MVA三相双绕组自冷有载调压变电
在城市规划工作中,科学、系统的调查,其作用是:
材料应进行严格的质量控制,凡涉及工程安全及使用功能的有关材料应经()检查认可。
耗氧量最大的是()。
Whydowelaugh?Foryearsscientistshaveaskedthemselvesthisquestion.Nootheranimalslaughandsmile--onlyhumanbeings,
最新回复
(
0
)