首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵. 利用(1)的结果判断矩阵B一CTA一1C是否为正定矩阵,并证明你的结论.
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵. 利用(1)的结果判断矩阵B一CTA一1C是否为正定矩阵,并证明你的结论.
admin
2016-01-11
98
问题
设
为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.
利用(1)的结果判断矩阵B一C
T
A
一1
C是否为正定矩阵,并证明你的结论.
选项
答案
由(1)的结果知,矩阵D合同于矩阵[*]又D为正定矩阵,可知矩阵M为正定矩阵,从而M的各阶顺序主子式大于零,于是B一C
T
A
一1
c的各阶顺序主子式也大于零.因矩阵M为对称矩阵,故B一C
T
A
一1
C为对称矩阵,故B一C
T
A
一1
C为正定矩阵.
解析
本题主要考查正定矩阵的判定以及分块矩阵的运算.首先求出P
T
,然后利用分块矩阵的运算法则求出P
T
DP,再证明B~C
T
A
一1
C为正定矩阵.
转载请注明原文地址:https://kaotiyun.com/show/Fv34777K
0
考研数学二
相关试题推荐
设A为m×n阶矩阵,则方程组AX=b有唯一解的充分必要条件是().
设A=且存在三阶非零矩阵B,使得AB=O,则α=________,b=________.
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2-4E的特征值为0,5,32.求A-1的特征值并判断A-1是否可对角化.
设A为m×n阶实矩阵,且r(A)=n.证明:ATA的特征值全大于零.
设随机变量X1,X2,X3,X4互独立且都服从标准正态分布N(0,1),已知,对给定的α(0<α<1),数yα满足P{Y>ya}=α,则有
设3阶实对称矩阵A满足A2=2A,已知二次型f(x1,x2,x3)=xTAx经正交变换x=Qy化为λy22+λy32(λ≠0),其中Q=(b>0,c>0).求一个可逆线性变换x=Pz化f为规范形.
设函数f(x)是以T为周期的连续函数.(Ⅰ)证明:∫0x(t)dt可以表示成一个以T为周期的连续函数与kx之和,并求常数k;(Ⅱ)计算∫0xf(t)dt.
求函数f(x)=在区间上的平均值I.
设f(x,y)为连续函数,且f(x,y)=xf(x,y)dxdy+y2,则f(x,y)=().
随机试题
《吕氏春秋》是谁组织其门客集体编撰的【】
由发展中国家组成的最打自由贸易区是()
提倡“诗主性情,不贵奇巧”的诗人是()
根据《2000通则》,在FCA贸易术语下,如货物在卖方仓库处交付后使用公路运输方式,则意味着卖方要负担将货物装上卡车的费用。()
根据《贷款通则》的规定,贷款期限根据借款人的生产经营周期、还款能力和银行的资金供给能力由借贷双方共同商议后确定,并在借款合同中载明。()
按信托财产的不同,下列不属于信托财产分类的是()。
古时候对“戴罪立功”的犯人一般会“从轻发落”,这种“从轻发落”是()
外交准则
从逻辑角度看,大型网络可分为核心层、汇聚层和接入层。以下描述正确的是(67)。
OnApril20,2000,inAccra,Ghana,theleadersofsixWestAfricancountriesdeclaredtheirintentiontoproceedtomonetaryun
最新回复
(
0
)