首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵. 利用(1)的结果判断矩阵B一CTA一1C是否为正定矩阵,并证明你的结论.
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵. 利用(1)的结果判断矩阵B一CTA一1C是否为正定矩阵,并证明你的结论.
admin
2016-01-11
94
问题
设
为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.
利用(1)的结果判断矩阵B一C
T
A
一1
C是否为正定矩阵,并证明你的结论.
选项
答案
由(1)的结果知,矩阵D合同于矩阵[*]又D为正定矩阵,可知矩阵M为正定矩阵,从而M的各阶顺序主子式大于零,于是B一C
T
A
一1
c的各阶顺序主子式也大于零.因矩阵M为对称矩阵,故B一C
T
A
一1
C为对称矩阵,故B一C
T
A
一1
C为正定矩阵.
解析
本题主要考查正定矩阵的判定以及分块矩阵的运算.首先求出P
T
,然后利用分块矩阵的运算法则求出P
T
DP,再证明B~C
T
A
一1
C为正定矩阵.
转载请注明原文地址:https://kaotiyun.com/show/Fv34777K
0
考研数学二
相关试题推荐
A=求a,b及可逆矩阵P,使得P-1AP=B.
设A=方程组AX=β有解但不唯一.(1)求a;(2)求可逆矩阵P,使得P-1AP为对角阵;(3)求正交矩阵Q。使得QTAQ为对角阵.
设λ1,λ2,λ3是三阶矩阵A的三个不同特征值,α1,α2,α3分别是属于特征值λ1,λ2,λ3的特征向量,若α1,A(α1+α2),A2(α1+α2+α3)线性无关,则λ1,λ2,λ3满足________.
设A,B为n阶正定矩阵.证明:A+B为正定矩阵.
设A为n阶正定矩阵.证明:对任意的可逆矩阵P,PTAP为正定矩阵.
设函数f(x)在[0,1]上连续,(0,1)内可导,且证明在(0,1)内存在一点,使fˊ(c)=0.
设a1=(a1,a2,a3)T,a2=(b1,b2,b3)T,a3=(c1,c2,c3)T则三条直线a1x+b1y+c1=0,a2x+b2y+c2=0,a3x+b3y+c3=0相交于一点的充分必要条件是().
已知连续函数f(x)满足条件,求f(x).
设f(x)在[0,t](t>0)上有n阶导数且非负,已知f(0)=f’+(0)=f”+(0)=…=f+(n-2)(0)=0,f(n)(x)>0.(I)求F(t)=∫0tsf(x)dx-t∫0tf(x)dx(n为大于1的正整数)的n阶导数;(Ⅱ)证明:(
设f(u)连续,g(x)=∫01f(tx)dt,且=A(A为常数),求g’(x),并讨论g’(x)在x=0处的连续性.
随机试题
Sincethe1960s,CanadaandtheUnitedStateshavebecomemoreculturallydiversethanatanyothertimeintheirhistory.In19
下列关于无形资产会计处理的表述中,正确的有()。
论述生态系统发展趋势。
《金匮要略.惊悸吐衄下血胸满瘀血病脉证治》治疗心悸的常用方剂为( )
患者女性,9岁,气促,烦躁不安,口唇青紫,杵状指。听诊:胸骨左缘2~4肋间可闻及粗糙喷射性收缩期杂音,临床诊断为法洛四联症。法洛四联症常与哪些疾病相鉴别
以下药物不属于甲状腺功能亢进治疗药物的是()。
1.背景材料:某路桥公司承包了某高速公路标段路面工程的施工任务,在施工过程中,沥青混凝土摊铺机连续发生机械设备事故,导致该标段没有按合同规定的日期完成施工任务。2.问题:机械设备事故的预防措施的要点是什么?
下列关于票据的各项表述中,符合规定的有()。
与普通消费品以产品成本为基础的定价方式相异,奢侈品品牌通常会根据不同的市场期望值制定出欧洲、美国、亚洲3个不同的零售价格区域。在以法国、意大利为主要原产地的欧洲,奢侈品的定价往往最低。而欧洲品牌到了美国市场,通常也只会把价格稍微提高一些,因为那里的消费者对
Thepolicemantriedto______theteenagedrivertoobeythetrafficlawsratherthanfinehimdirectly.
最新回复
(
0
)