首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(14)证明n阶矩阵相似.
(14)证明n阶矩阵相似.
admin
2018-08-01
59
问题
(14)证明n阶矩阵
相似.
选项
答案
证1:设矩阵A=[*] 因为 |λE-A|=[*]=(λ-1)λ
n-1
|λE-B|=[*]=(λ-n)λ
n-1
所以A与B有相同的特征值λ
1
=n,λ
n
=0(n-1重). 由于A为实对称矩阵,所以A相似于对角矩阵 [*] 因为r(λ
2
E-B)=r(B)=1,所以B的对应于特征值λ
2
=0有n-1个线性无关的特征向量,于是由方阵相似于对角矩阵的充要条件知B也相似于A.再由矩阵的相似关系具有对称性和传递性知A与B也相似. 证2:设存在可逆矩阵P,使得P
-1
AP=B,或AP=PB,设P按列分块为P=[p
1
,p
2
,p
n
],则 AP=PB[*]A[p
1
,p
2
,…,p
n
]=[p
1
,p
2
,…,p
n
][*]Ap
1
=0,…,Ap
n-1
=0,…,Ap
n
=p
1
+2p
2
+…+np
n
, 由解上面的方程组,可求出可逆矩阵 P=[p
1
,p
2
,…,p
n
]= [*] 满足P
-1
AP=B,所以A相似于B.
解析
转载请注明原文地址:https://kaotiyun.com/show/G2j4777K
0
考研数学二
相关试题推荐
设矩阵A=b=若集合Ω={1,2},则线性方程组Ax=b有无穷多解的充分必要条件为
设y=y(x)二阶可导,且y’≠0,x=x(y)是y=y(x)的反函数.(1)将x=x(y)所满足的微分方程变换为y=y(x)所满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0,y’(0)=的解.
[*]则(Ⅱ)可写为BY=0,因为β1,β2,…,βn为(Ⅰ)的基础解系,因此r(A)=n,β1,β2,…,βn线性无关,Aβ1=Aβ2=…=Aβn=0[*]A(β1,β2,…,βn)=[*]BAT=O[*]α1T,α2T,…,αnT为BY=0的一组解,
设A为三阶矩阵,A的第一行元素为a,b,c且不全为零,又B=且AB=O,求方程组Ax=0的通解.
设A=有三个线性无关的特征向量,则a=_______.
设α1,α2,…,αm与β1,β2,…,βs为两个n维向量组,且r(α1,α2,…,αm)=r(β1,β2,…,βs)=r,则().
设向量组(Ⅰ):α1,α2,…,αs的秩为r1,向量组(Ⅱ):β1,β2,…,βs的秩为r2,且向量组(Ⅱ)可由向量组(Ⅰ)线性表示,则().
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*,α2b=0.
设A=(aij)n×n为实对称矩阵,求二次型函数f(x1,x2,…,xn)=在Rn上的单位球面S:x12+x22+…+xn2=1上的最大值与最小值.
已知f(x1,x2,x3)=5x12+5x22+cx32-2x1x2+6x1x3—6x2x3的秩为2.试确定参数c及二次型对应矩阵的特征值,并问f(x1,x2,x3)=1表示何种曲面.
随机试题
在所有的外部招募来源中,招募成本最低的招募渠道是【】
男,8岁。剧烈运动后胸闷,气短1个月。查体:心前区未触及震颤,胸骨左缘2~3肋间闻及3/6级收缩期喷射性杂音,P2增强、固定分裂。最可能的诊断是
法院调解生效后,即具有以下法律效力( )。
某股份公司将其所有财产向甲保险公司投保火灾保险。甲保险公司将该项保险业务的20%以再保险的方式转由乙保险公司承保。在保险期间内,该股份公司仓库因遭雷击而发生火灾,造成损失53万元。根据这些情况,选项所作的表述中哪些是错误的?
=()。
《关于加强孤儿救助工作的意见》规定的安置孤儿的形式包括()。
准群体是指没有组织结构,人与人之间有某种联系,有一定程度的共同关注点,有可能在某些时候形成集团,但目前还没有组织起来的人群。 根据上述定义,下列属于准群体的是:
1978年《光明日报》发表《实践是检验真理的唯一标准》,引发了关于真理标准问题的大讨论,这次讨论()
Wheredidtheconversationtakeplace?
Speakingfromanartisticangle,thechoreography,stagescenery,lightingandmusicarejustfabulous.
最新回复
(
0
)