首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在x0的邻域内四阶可导,且|f(4)(x)|≤M(M>0).证明:对此邻域内任一异于x0的点x,有 |f″(x0)-[f(x)+f(x′)-2f(x0)]/(x-x0)2|≤M/12(x-x0)2, 其中x′为x关于x0的对称点.
设f(x)在x0的邻域内四阶可导,且|f(4)(x)|≤M(M>0).证明:对此邻域内任一异于x0的点x,有 |f″(x0)-[f(x)+f(x′)-2f(x0)]/(x-x0)2|≤M/12(x-x0)2, 其中x′为x关于x0的对称点.
admin
2022-08-19
48
问题
设f(x)在x
0
的邻域内四阶可导,且|f
(4)
(x)|≤M(M>0).证明:对此邻域内任一异于x
0
的点x,有
|f″(x
0
)-[f(x)+f(x′)-2f(x
0
)]/(x-x
0
)
2
|≤M/12(x-x
0
)
2
,
其中x′为x关于x
0
的对称点.
选项
答案
由f(x)=f(x
0
)+f′(x
0
)(x-x
0
)+[f″(x
0
)/2!](x-x
0
)
2
+[f′″(x
0
)/3!](x-x
0
)
3
+[f
(4)
(ξ
1
)/4!](x-x
0
)
4
, f(x′)=f(x
0
)+f′(x
0
)(x′-x
0
)+[f″(x
0
)/2!](x′-x
0
)
2
+[f′″(x
0
)/3!](x′-x
0
)
3
+[f
(4)
(ξ
2
)/4!](x′-x
0
)
4
, 两式相加得 f(x)+f(x′)-2f(x
0
)=f″(x
0
)(x-x
0
)
2
+1/24[f
(4)
(ξ
1
)+f
(4)
(ξ
2
)](x-x
0
)
4
, 于是|f″(x
0
)-[f(x)+f(x′)-2f(x
0
)]/(x-x
0
)
2
|≤1/24[f
(4)
(ξ
1
)|+|f
(4)
(ξ
2
)|](x-x
0
)
2
, 再由|f
(4)
(x)|≤M,得 |f″(x
0
)-[f(x)+f(x′)-2f(x
0
)]/(x-x
0
)
2
|≤M/12(x-x
0
)
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/G3R4777K
0
考研数学三
相关试题推荐
设z=f(x,y)由方程z-y-z+xez-y-x=0确定,求dz.
计算二重积分(x+y)dxdy,其中D:x2+y2≤x+y+1.
把f(x,y)dxdy写成极坐标的累次积分,其中D={(x,y)|0≤x≤1,0≤y≤x}.
设f(x,y)可微,且f’1(-1,3)=-2,f’2(-1,3)=1,令z=,则dz|(1,3)=______.
计算dxdy,其中D为单位圆x2+y2=1所围成的位于第一象限的部分.
一质点从时间t=0开始直线运动,移动了单位距离使用了单位时间,且初速度和末速度都为零.证明:在运动过程中存在某个时刻点,其加速度绝对值不小于4.
设f(x)在x=a的邻域内有定义,且f’+(a)与f’-(a)都存在,则().
设α1,α2,α3,α4,α5均为4维列向量,下列说法中正确的是()
计算二重积分,其中D是由直线x=-2,y=0,y=2以及曲线x=所围成的平面图形。
随机试题
甲股份有限公司(以下简称“甲公司”)是一家上市公司,与股权投资有关的资料如下:(1)甲公司与乙公司均为增值税一般纳税人,适用的增值税税率为17%,适用的所得税税率均为25%,所得税均采用资产负债表债务法核算。2×16年1月1日,甲公司以定向增发普
政府及其所属部门滥用行政权力,强制经营者从事法律所禁止的排除或限制市场竞争的行为称为【】
患者,男,56岁。1周前右上腹部绞痛,伴恶心、呕吐,体温37.4℃,予以抗炎治疗后缓解。3天来,出现巩膜黄染,食欲缺乏,收入院。查体:腹软,无压痛,Murphy征(﹣),肝区轻叩痛。B超:胆囊10cm×5cm大小,其内可见多个点状回声,胆总管上段直径1.2
上消化道出血
肉眼血尿反复发作,最常见的肾小球疾病是
在项目目标动态控制的纠偏措施中,调整管理职能分工属于()。
下列行为没有违法的是()。
下列筹资方式中,没有筹资费用,但是财务风险较小,资本成本较高的筹资方式是()。
某案的两名凶手在以下五人中,经过公安部门的侦查后得知:①只有甲是凶手,乙才是凶手②只要丁不是凶手,丙就不是凶手③或乙是凶手,或丙是凶手④丁没有戊为帮凶,就不会作案⑤戊没有作案时间这件案件中的凶手是:
我国现场检查的原则是()。
最新回复
(
0
)