首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设p(x)在(a,b)连续,∫p(x)dx表示p(x)的某个原函数,C为任意常数,证明:y=Ce-∫p(x)dx是方程y’+p(x)y=0的所有解.
设p(x)在(a,b)连续,∫p(x)dx表示p(x)的某个原函数,C为任意常数,证明:y=Ce-∫p(x)dx是方程y’+p(x)y=0的所有解.
admin
2018-06-27
74
问题
设p(x)在(a,b)连续,∫p(x)dx表示p(x)的某个原函数,C为任意常数,证明:y=Ce
-∫p(x)dx
是方程y’+p(x)y=0的所有解.
选项
答案
易直接验证对任意常数C,y=Ce
-∫p(x)dx
是原方程的解.只需再证:若y是原方程的解,则存在某常数C,使得y=Ce
-∫p(x)dx
,即证:ye
∫p(x)dx
为常数. 因为对任意常数C,y=Ce
-∫p(x)dx
是原方程的解,又设y是原方程的任意一个解,则 [ye
∫p(x)dx
]’=e
∫p(x)dx
[y’+p(x)y]=0, 即存在常数C,使得ye
∫p(x)dx
=C,即y=Ce
-∫p(x)dx
.
解析
转载请注明原文地址:https://kaotiyun.com/show/G4k4777K
0
考研数学二
相关试题推荐
试证明:当x>0时θ(x)为单调增加函数且
微分方程yy’’一(y’)2=0满足y(0)=1与y’(0)=1的特解是_________.
设曲线L的参数方程为x=φ(t)=t一sint,y=ψ(t)=1一cost(0≤t≤2π)设曲线L的形心为(),求
设曲线L的参数方程为x=φ(t)=t一sint,y=ψ(t)=1一cost(0≤t≤2π)求证:由L的参数方程确定连续函数y=y(x),并求它的定义域;
已知4元齐次线性方程组的解全是4元方程(ii)x1+x2+x3=0的解,求齐次方程(ii)的解.
已知4元齐次线性方程组的解全是4元方程(ii)x1+x2+x3=0的解,求齐次方程组(i)的解;
已知4元齐次线性方程组的解全是4元方程(ii)x1+x2+x3=0的解,求a的值;
设方程y3+sin(xy)一e2x=0确定曲线y=y(x).求此曲线y=y(x)在点(0,1)处的曲率与曲率半径.
已知y1*(x)=xe-x+e-2x,y2*(x)=xe-x+xe-2x,y3*(x)=xe-x+e-2x+xe-2x是某二阶线性常系数微分方程y’’+Py’+qy=f(x)的三个特解.求这个方程和它的通解:
设可导函数x=x(t)由方程所确定,其中可导函数f(u)>0,且f(0)=f’(0)=1,则x’’(0)=
随机试题
信息比率基本思想是通过无风险利率下的借贷,将被评价组合(基金)的标准差调整到与基准指数相同的水平下,进而对基金相对基准指数的表现作出考察。( )
制冷系统中,冷凝器在正常工作时,冷凝压力一般不超过()MPa。
临床应用以饥不欲食,口干咽燥。舌红少津,脉细数为辨证要点的方剂是
酸性食品抑制多种微生物的pH范围是()
运动员:运动场:比赛
月光是引人诗兴的,因此在中国旧诗词中,不知有多少关于月的吟咏,像“长安一片月,万户捣衣声”“暮云收尽溢清寒,银汉无声转玉盘”,但那多半是赞秋月的,而今夜是冬月,没有__________,__________,没有__________,__________,
我国《刑法》第357条规定,本法所称的毒品,是指鸦片、海洛因、甲基苯丙胺(冰毒)、吗啡、大麻、可卡因以及国家规定管制的其他能够使人形成瘾癖的麻醉药品和精神药品。据此,下列说法正确的是()。
中国共产党和中国政府对非公有制经济在社会主义中国存在、发展及其地位、作用的认识以及相关的方针政策,经历了一个曲折变化和不断深化的发展过程。中国的非公有制经济也经历了曲折的发展历程。对于社会主义初级阶段的非公有制经济说法正确的有()
证明收敛。
Thehorseandcarriageisathingofthepast,butloveandmarriagearestillwithusandstillcloselyinterrelated.MostAmer
最新回复
(
0
)