首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设箱中有5件产品,其中3件是优质品.从该箱中任取2件,以X表示所取的2件产品中的优质品件数,y表示箱中3件剩余产品中的优质品件数. (Ⅰ)求(X,Y)的概率分布; (Ⅱ)求Cov(X,Y).
设箱中有5件产品,其中3件是优质品.从该箱中任取2件,以X表示所取的2件产品中的优质品件数,y表示箱中3件剩余产品中的优质品件数. (Ⅰ)求(X,Y)的概率分布; (Ⅱ)求Cov(X,Y).
admin
2017-11-09
44
问题
设箱中有5件产品,其中3件是优质品.从该箱中任取2件,以X表示所取的2件产品中的优质品件数,y表示箱中3件剩余产品中的优质品件数.
(Ⅰ)求(X,Y)的概率分布;
(Ⅱ)求Cov(X,Y).
选项
答案
(Ⅰ)因为X的所有可能的取值为0,1,2,Yy的所有可能的取值为3,2,1,且X+Y=3,所以, P{X=0,Y=3}=P{X=0}=[*], P{X=1,Y=2}=P{X=1}=[*], P{X=2,Y=1}=P{X=2}=[*], P{X=0,Y=1}=P{X=0,Y=2}=P{X=1,y=1}=0, P{X=1,Y=3}=P{X=2,Y=2}=P{X=2,Y=3}=0. 由此得(X,Y)的概率分布为 [*] (Ⅱ)因为Y=3-X,所以 Cov(X,Y)=Cov(X,3-X)=-C0v(X,X)=-D(X). 易知X的概率分布为 [*] 所以Cov(X,Y)=-[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/G6X4777K
0
考研数学三
相关试题推荐
设f(x)在[0,1]上二阶可导,且f(0)=f(1)=0.证明:存在ξ∈(0,1),使得f"(ξ)=
设f(x)在(一∞,+∞)上可导,,则a=________.
设A=,求a,b及正交矩阵P,使得PTAP=B.
设A为三阶矩阵,A的第一行元素为a,b,c且不全为零,又B=且AB=O,求方程组AX=0的通解.
设A=(α1,α2,…,αm),若对于任意不全为零的常数k1,k2,…,km,皆有k1α1+k2α2+…+kmαm≠0,则().
设一部机器一天内发生故障的概率为,机器发生故障时全天停止工作.若一周5个工作日无故障,则可获利10万元;发生一次故障获利5万元;发生两次故障获利0元;发生三次及以上的故障亏损2万元,求一周内利润的期望值.
设f(x)是连续函数.(1)求初值问题的解,其中a>0;(2)若|f(x)|≤k,证明:当x≥0时,有|y(x)|≤(eax一1).
设X1,X2,…,Xn是来自正态总体X~N(μ,σ2)的简单随机样本,记则服从t(n一1)分布的随机变量是().
设随机变量X的概率密度为求X的分布函数.
已知二次型f(x1,x2,x3)=422一3x32+4x1x2—4x1x3+8x2x3.写出二次型f的矩阵表达式;
随机试题
以下是企业各项负债,其中可能存在暂时性差异的项目有()
国际铁路货物联运办理业务类别有()
西湖七月半,一无可看,止可看看七月半之人。看七月半之人,以五类看之。其一,楼船箫鼓,峨冠盛筵,灯火优侯,声光相乱,名为看月而实不见月者,看之;其一,亦船亦楼,名娃闺秀,携及童娈,笑啼杂之,环坐露台,左右盼望,身在月下而实不看月者,看之;其一,亦船亦声歌,名
儿科护理人员的素质要求包括
配股的发行方式为( )。
企业的新产品开发组织根据新产品开发任务书的规定和消费者对新产品的要求,运用现代科学与技术手段,形成完整的产品概念,这些活动是新产品的()。
西班牙内战
某省在建设服务型政府过程中,对公共服务“做加法”,对增加办事门槛和费用负担的中介服务“做减法”。截至2017年1月,“公共服务清单”新增2505个服务项目,增幅135%;“中介服务清单”取消或规范147个项目,精简比例达43%。两个清单的形成和公布,其意义
以下对C语言函数的叙述中正确的是()。
HowDotheMoviesDoIt?Haveyoueverseenmoviesinwhichabuildingwasburneddownorabridgewasdestroyed?Haveyouse
最新回复
(
0
)