首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)连续,且∫0xtf(2x-t)dt=arctanx2.已知f(1)=1,求∫12f(x)dx的值.
设函数f(x)连续,且∫0xtf(2x-t)dt=arctanx2.已知f(1)=1,求∫12f(x)dx的值.
admin
2019-05-08
70
问题
设函数f(x)连续,且∫
0
x
tf(2x-t)dt=
arctanx
2
.已知f(1)=1,求∫
1
2
f(x)dx的值.
选项
答案
令u=2x-t,则t=2x-u,dt=-du. 当t=0时,u=2x;当t=x时,u=x.故 ∫
0
x
tf(2x-t)dt=-∫
2x
x
(2x-u)f(u)du=2x∫
x
2x
f(u)du-∫
x
2x
uf(u)du, 由已知得2x∫
x
2x
f(u)du-∫
x
2x
uf(u)du=[*]arctanx
2
,两边对x求导,得 2∫
x
2x
f(u)du+2x[2f(2x)-f(x)]-[2xf(2x).2-xf(x)]=[*], 即 2∫
x
2x
f(u)du=[*]+xf(x). 令x=1,得2∫
1
2
f(u)du=[*]].故∫
1
2
f(x)dx=[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/GEJ4777K
0
考研数学三
相关试题推荐
设随机变量X的分布函数为F(x),其密度函数为其中A为常数,则的值为()
设随机变量X的密度函数为φ(x),且φ(一x)=φ(x),F(x)为X的分布函数,则对任意实数a,有()
求z=x2+12xy+2y2在区域4x2+y2≤25上的最值.
设f(x)在[a,b]上连续,且对任意的t∈[0,1]及任意的x1,x2∈[a,b]满足:f[tx1+(1-t)x2]≤tf(x1)+(1-t)f(x2).证明.
设α1,α2,…,αM与β1,β2,…,βs为两个n维向量组,且r(α1,α2,…,αm)=r(β1,β2,…,βs)=r,则().
曲线y=的斜渐近线为______.
设微分方程及初始条件为(Ⅰ)求满足上述微分方程及初始条件的特解;(Ⅱ)是否存在常数y1,使对应解y=y(x)存在斜渐近线,请求出此y1及相应的斜渐近线方程.
微分方程y"+2y’一3y=ex有特解形式()
设f(x)在x=0处存在4阶导数,又设则必有()
(2001年)设随机变量X,Y的数学期望分别是-2和2,方差分别为1和4,而相关系数为-0.5。则根据切比雪夫不等式P{|X+Y|≥6}≤______。
随机试题
简述量变与质变的复杂多样性。
釉质和牙骨质在牙颈部相连的关系是
对牙本质过敏症患牙,最敏感的刺激是
长于治疗寒痰咳喘,胸满胁痛的药物是()
按《建筑桩基技术规范》(JGJ94-94)取承台及其上土的平均重度γG=20kN/m2,则桩顶竖向力设计值最小与下列( )项值接近。承台受弯承载力My与下列( )项值接近。
账务处理不包括()。
医疗保险中不包括( )。
()是选择筹资方式、进行资本结构决策和选择追加筹资方案的依据。
钟表的时针与分针在4点多少分第一次重合?( )
设f(x)=∫0xdt∫0ttln(1+u2)du,g(x)=(1一cost)dt,则当x→0时,f(x)是g(x)的().
最新回复
(
0
)