首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[a,b]上二阶可导,g"(x)≠0,f(b)=f(b)=g(a)=g(b)=0,证明: 在(a,b)内,g(x)≠0;
设f(x),g(x)在[a,b]上二阶可导,g"(x)≠0,f(b)=f(b)=g(a)=g(b)=0,证明: 在(a,b)内,g(x)≠0;
admin
2018-12-27
28
问题
设f(x),g(x)在[a,b]上二阶可导,g"(x)≠0,f(b)=f(b)=g(a)=g(b)=0,证明:
在(a,b)内,g(x)≠0;
选项
答案
假设对任意的c∈(a,b)且g(c)=0。 由于g(a)=g(c)=g(b)=0,g(x)在[a,c],[c,b]上分别运用罗尔定理可得g’(ξ
1
)= g’(ξ
2
)=0,其中ξ
1
∈(a,c),ξ
2
∈(c,b),对g’(x)在[ξ
1
,ξ
2
]上运用罗尔定理,可得g"(ξ
3
)=0,其中ξ
3
∈(ξ
1
,ξ
2
)。 因已知g"(x)≠0,与题设矛盾,故g(c)≠0,即在(a,b)内,g(x)≠0。
解析
转载请注明原文地址:https://kaotiyun.com/show/GGM4777K
0
考研数学一
相关试题推荐
(90年)设不恒为常数的函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b).证明在(a,b)内至少存在一点ξ,使得f’(ξ)>0.
(87年)设函数f(x)在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f’(x)≠1,证明在(0,1)区间内有且仅有一个x,使得f(x)=x.
(90年)设a是非零常数,则
(88年)设函数f(x)在区间[a,b]上连续,且在(a,b)内有f’(x)>0.证明:在(a,b)内存在唯一的ξ,使曲线y=f(x)与两直线y=f(ξ),x=a所围平面图形面积S1是曲线y=f(x)与两直线y=f(ξ),x=b所围平面图形面积S2的3倍.
(13年)设奇函数f(x)在[一1,1]上具有2阶导数,且f(1)=1.证明:(I)存在ξ∈(0,1),使得f’(ξ)=1;(Ⅱ)存在η∈(一1,1),使得f"(η)+f’(η)=1.
(12年)设A为3阶矩阵,P为3阶可逆矩阵,且p-1AP=若P=(α1,α2,α3),Q=(α1+α2,α2,α3),则Q-1AQ=
(15年)设向量组α1,α2,α3为R3的一个基,β1=2α1+2kα3,β2=2α2,β3=α1+(k+1)α3.(I)证明向量组β1,β2,β3为R3的一个基;(Ⅱ)当k为何值时,存在非零向量ξ在基α1,α2,α3与基β1,β2,β3下的坐标相同,
(93年)已知二次型f(x1,x2,x3)=2x12+3x22+3x32+2ax2x3(a>0)通过正交变换化成标准形f=y12+2y22+5y32,求参数a及所用的正交变换矩阵.
已知连续型随机变量X的概率密度为f(x)=,则X的数学期望为_______,X的方差为_______.
齐次线性方程组的系数矩阵为A,存在B≠0,使得AB=0,则()
随机试题
A住宅小区甲物业服务公司利用该小区电梯、地下室、外墙做广告,并在车辆出入口做灯箱广告。上述广告收入中,属于小区业主共有的是()。
下列常用的调查方法为
注册土地估价师在执业期间有下列情形之一的,注销其注册()。
人耳对声音响度变化程度的感觉,更接近于以下哪个量值的变化程度?(2009,2)
《会计法》属于()。
下列选项中,属于纳税人申请退还增量留抵税额所需满足的条件有()。
2,6,12,20,()
阅读算法,回答问题。voidAC(List&L){InitList(L);InsertRear(L,25);InsertFront(L,50);inta[4]=15,8,12,15,36];
数据库管理技术随着计算机技术的发展而发展,数据库系统具有许多特点,下面列出的特点中哪一个不是数据库阶段的特点?()
以下程序调用findmax函数返回数组中的最大值findmax(int*a,intn){int*p,*s;for(p=a,s=a;p-a<n;p++)if(______)s=p;
最新回复
(
0
)