首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设η1,η2,η3,η4是齐次方程组Ax=0的基础解系,则下列向量组中也是Ax=0的基础解系的是
设η1,η2,η3,η4是齐次方程组Ax=0的基础解系,则下列向量组中也是Ax=0的基础解系的是
admin
2020-06-20
98
问题
设η
1
,η
2
,η
3
,η
4
是齐次方程组Ax=0的基础解系,则下列向量组中也是Ax=0的基础解系的是
选项
A、η
1
+η
2
,η
2
一η
3
,η
3
一η
4
,η
4
一η
1
.
B、η
1
+η
2
,η
2
一η
3
,η
3
一η
4
,η
4
+η
1
.
C、η
1
+η
2
,η
2
+η
3
,η
3
一η
4
,η
4
一η
1
.
D、与η
1
,η
2
,η
3
,η
4
等价的向量组.
答案
A
解析
首先可排除(D),因为与η
1
,η
2
,η
3
,η
4
等价的向量组不必线性无关,包含向量个数也不必为4.另外3项都给出了Ax=0的4个解,是否构成基础解系只用看它们是否线性无关,即看秩是否为4.
(A)向量组η
1
+η
2
,η
2
一η
3
,η
3
一η
4
,η
4
一η
1
对η
1
,η
2
,η
3
,η
4
的表示矩阵为
其行列式的值为2,因此是可逆矩阵.于是η
1
+η
2
,η
2
一η
3
,η
3
一η
4
,η
4
一η
1
的秩为4.
(B)向量组η
1
+η
2
,η
2
一η
3
,η
3
一η
4
,η
4
+η
1
对η
1
,η<sub2,η
3
,η
4
的表示矩阵为
其行列式的值为0,因此是不可逆矩阵.η
1
+η
2
,η
2
一η
3
,η
3
一η
4
,η
4
+η
1
的秩<4.
(C)向量组η
1
+η
2
,η
2
+η
3
,η
3
一η
4
,η
4
一η
1
对η
1
,η
2
,η
3
,η
4
的表示矩阵为
其行列式的值为0,因此也是不可逆矩阵.η
1
+η
2
,η
2
+η
3
,η
3
一η
4
,η
4
一η
1
的秩<4.
转载请注明原文地址:https://kaotiyun.com/show/GLx4777K
0
考研数学三
相关试题推荐
判断A=是否可对角化?并说明理由.
设总体X的概率密度f(x)=其中a是常数,λ>0是未知参数,从总体X中抽取样本X1,X2,…,Xn。求:(Ⅰ)常数a;(Ⅱ)求λ的最大似然估计量。
设f(x)=,求f(2010)(0).
级数的收敛域为__________,和函数为__________.
设y=y(x,z)是由方程ex+y+z=x2+y2+z2确定的隐函数,则=________.
连续函数f(x)满足f(x)=3∫0xf(x一t)dt+2,则f(x)=________.
设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,r(A)=3,且α1+α2=,α2+α3=,则方程组AX=b的通解为________.
设非负函数f(x)当x≥0时连续可微,且f(0)=1.由y=f(x),x轴,y轴及过点(x,0)且垂直于x轴的直线围成的图形的面积与y=f(x)在[0,x]上弧的长度相等,求f(x).
设方程组无解,则a=________.
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α1,α2线性无关,若β=α1+2α2-α3=α1+α2+α3+α4=α1+3α2+α3+2α4,则Ax=β的通解为________.
随机试题
国家公务员新陈代谢制度包活对国家公务员的()
味觉发育的关键时期是
结核病最主要的传播途径是
图示结构MBA为()。
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性。
在英国教育体系中增加职业技术教育一轨的文件是()
H市某研究所主要研究特种材料。在计划经济时期,该所承担了多项国家下达的科研攻关任务,取得了十分突出的成就,同时形成了良好的协同攻关气氛和机制,造就了一批优秀的技术人才。但改革以后,国家任务逐渐减少,直到目前完全取消,因而该所取得的成果也随之减少。为了扭转目
某系统结构图如下所示: 该系统结构图的最大扇入数是()。
Youshouldspendabout40minutesonthistask.Writeaboutthefollowingtopic:Creativeartistsshouldalwaysbegiventhe
Moststudiessuggestthatwhenwomenandmenshoulddothe(1)______samejobandhavetheexperience,payratestendtobesimi
最新回复
(
0
)