首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知n阶矩阵A的各行元素之和均为零,且r(A)=n-1,则线性方程组AX=0的通解是_________.
已知n阶矩阵A的各行元素之和均为零,且r(A)=n-1,则线性方程组AX=0的通解是_________.
admin
2019-03-12
86
问题
已知n阶矩阵A的各行元素之和均为零,且r(A)=n-1,则线性方程组AX=0的通解是_________.
选项
答案
k[1,1,…,1]
T
,其中k为任意常数
解析
r(A)=n-1知AX=0的基础解系有n-(n-1)=1个非零向量组成.A的各行元素之和均为零,即
a
i1
+a
i2
+…+a
in
=0,i=1,2,…,,n.
也就是 a
i1
.1+a
i2
.1+…+a
in
.1=0,i=1,2,…,n,
即ξ=[1,1,…,1]
T
是AX=0的非零解,于是方程组AX=0的通解为k[1,1,…,1]
T
,其中k为任意常数.
转载请注明原文地址:https://kaotiyun.com/show/XrP4777K
0
考研数学三
相关试题推荐
已知总体X是离散型随机变量,X可能取值为0,1,2,且P{X=2}=(1—θ)2,EX=2(1—θ)(θ为未知参数).对X抽取容量为10的样本,其中5个取1,3个取2,2个取0,求θ的矩估计值、最大似然估计值.
设有方程组(Ⅰ)求方程组(i)与(ii)的基础解系与通解;(Ⅱ)求方程组(i)与(ii)的公共解.
设χOy平面上有正方形D=((χ,y)|0≤χ≤1,0≤y≤1}及直线l:χ+y=t(t≥0),若S(t)表示正方形D位于直线l左下方部分的面积,试求∫0χS(t)dt(χ≥0).
函数f(χ)=展开成χ的幂级数为_______.
设f(χ)在[0,1]上连续,且满足f(0)=1,f′(χ)=f(χ)+aχ-a,求f(χ),并求a的值,使曲线y=f(χ)与χ=0,yχ0,χ=1所围平面图形绕χ轴旋转一周所得体积最小.
讨论线性方程组的解的情况,在线性方程组有无穷多解时,求其通解。
下列无穷小中阶数最高的是().
求极限
(1)求常数m,n的值,使得=3.(2)设当x→0时,x-(a+bcosx)sinx为x的5阶无穷小,求a,b.(3)设当x→0时,f(x)=ln(1+t)dt~g(x)=xa(ebx-1),求a,b.
设周期为4的函数f(x)处处可导,且则曲线y=f(x)在(一3,f(一3))处的切线为_________.
随机试题
Whenthereismoneyenoughtosatisfyonelevelofneeds,anotherlevelappears.
能够饱含并透过相当数量重力水的岩层或土层称为()。
(2006年)微分方程(1+y)dx-(1-x)dy=0的通解是()。
从经济效益、环境效益和社会效益三者统一的社会责任目标出发,进行项目决策,是()的要求。
设备安装工程概算的编制方法不包括( )。
以下软件中,不应视为会计核算软件的是()。
甲公司2015年至2018年对乙公司股票投资的有关资料如下:(1)2015年1月1日,甲公司向乙公司某大股东发行每股面值为1元、公允价值为3.5元的普通股1000万股,同时承担该股东对第三方的债务1000万元(未来现金流量的现值),以获取该股东拥有的
表示智力高低的一种理想指标是()。
下列常用调味品或食材组合中,不可以作为中药药材或药引的是()。
验证和确认的主要活动有______。A)可跟踪性分析B)关键性分析C)评估和接口分析D)以上全部
最新回复
(
0
)