首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=(1,1,1,3)T,α2=(一1,一3,5,1)T,α3=(3,2,一1,p+2)T,α4=(一2,一6,1 0,p)T.P为什么数时,α1,α2,α3,α4线性相关?此时求r(α1,α2,α3,α4)和写出一个最大无关组.
设α1=(1,1,1,3)T,α2=(一1,一3,5,1)T,α3=(3,2,一1,p+2)T,α4=(一2,一6,1 0,p)T.P为什么数时,α1,α2,α3,α4线性相关?此时求r(α1,α2,α3,α4)和写出一个最大无关组.
admin
2017-10-21
47
问题
设α
1
=(1,1,1,3)
T
,α
2
=(一1,一3,5,1)
T
,α
3
=(3,2,一1,p+2)
T
,α
4
=(一2,一6,1 0,p)
T
.P为什么数时,α
1
,α
2
,α
3
,α
4
线性相关?此时求r(α
1
,α
2
,α
3
,α
4
)和写出一个最大无关组.
选项
答案
计算r(α
1
,α
2
,α
3
,α
4
) [*] 则当P=2时,r(α
1
,α
2
,α
3
,α
4
)=3,α
1
,α
2
,α
3
,α
4
线性相关,α
1
,α
2
,α
3
是一个最大无关组. 当P≠2时,r(α
1
,α
2
,α
3
,α
4
)=4,α
1
,α
2
,α
3
,α
4
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/GOH4777K
0
考研数学三
相关试题推荐
设y=y(x)由方程ey+6xy+x2一1=0确定,求y"(0).
设A是n阶正定矩阵,证明:|E+A|>1.
用正交变换法化二次型f(x1+x2+x3)=x12+x22+x32—4x1x2—4x1x3—4x2x3为标准二次型.
设三阶实对称矩阵A的特征值为λ1=8,λ2=λ3=2,矩阵A的属于特征值λ1=8的特征向量为,求属于λ2=λ3=2的另一个特征向量.
设A为n阶矩阵,且A2一2A一8E=0.证明:r(4E一A)+r(2E+A)=n.
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+2α2+…+(n一1)αn—1=0,b=α1+α1+…+αn.(1)证明方程组AX=b有无穷多个解;(2)求方程组AX=b的通解.
设α1,α2为齐次线性方程组AX=0的基础解系,β1,β2为非齐次线性方程组AX=b的两个不同解,则方程组AX=b的通解为().
设(X,Y)服从二维正态分布,则下列说法不正确的是().
设三阶常系数齐次线性微分方程有特解y1=ex,y2=2xex,y3=3e—x,则该微分方程为().
对二元函数z=f(x,y),下列结论正确的是().
随机试题
企业采取宽松的营运资金持有政策,产生的结果有()。
下列不具免疫原性的物质是
乙购买了一块昂贵的劳力士表后,到处炫耀。甲对此十分嫉妒。于是骗乙说要请他吃饭,在吃饭的时候将乙灌醉。等乙回家走到一僻静的路段时,甲迅速将乙的手表捋下拿走。甲的行为触犯的罪名有:()
在亚洲,有的地方终年炎热,有的地方长冬无夏,有的地方雨水丰沛,有的地方常年干旱……这些都说明了亚洲范围广,各地气候差异大。下面有关亚洲气候差异的说法,正确的是()。
A、 B、 C、 D、 D题干图形可看成由两个小图形叠放在一起构成,重叠的部分为阴影,阴影部分与其中一个小图形相似,由此选择D。
“五四”以前新文化运动的基本口号是
请在【答题】菜单下选择【进入考生文件夹】命令,并按照题目要求完成下面的操作。注意:以下的文件必须都保存在考生文件夹下。某学校初中二年级五班的物理老帅要求学生两人一组制作一份物理课件。小曾与小张自愿组合,他们制作完成的第一章后三节内容见文档“第3—5节.
Accordingtothespeakerwhatdopeopleoftenthinkaboutastronomers
Manyafemaleclerk______aboutunequaltreatmentatworkinthiscompany.
【B1】【B7】
最新回复
(
0
)