首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f’’(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点. 证明:|f’(c)|≤2a+
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f’’(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点. 证明:|f’(c)|≤2a+
admin
2018-11-11
70
问题
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f’’(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.
证明:|f’(c)|≤2a+
选项
答案
分别令x=0,x=1,得 f(0)=f(c)-f’(c)c+[*],ξ
1
∈(0,c), f(1)=f(c)+f’(c)(1-c)+[*](1-c)
2
,ξ
2
∈(c,1), 两式相减,得f’(c)=f(1)-f(0)+[*](1-c)
2
,利用已知条件,得|f’(c)|≤2a+[*][c
2
+(1-c)
2
], 因为c
2
+(1-c)
2
≤1,所以|f’(c)|≤2a+[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/GRj4777K
0
考研数学二
相关试题推荐
设向量组α1,α2,α3是Ax=b的3个解向量,且r(A)=1,α1+α2=(1,2,3)T,α2+α3=(0,一1,1)T,α3+α1=(1,0,一1)T,求Ax=b的通解.
求抛物面壳的质量,此抛物面壳的面密度为z.
确定常数α使向量组α1=(1,1,a)T,α2=(1,n,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(一2,a,4)T,β3=(-2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示.
设函数y=f(x)由方程e2x+y-cos(xy)=e一1确定,求曲线y=f(x)在点(0,1)处的法线方程.
已知随机变量X和Y相互独立,且都服从正态分布N(0,σ2),求常数R,使得概率P{≤R}=0.5.
设函数f(x)连续,且满足f(x)=ex+∫0xtf(t)dt一x∫0xf(t)dt,求f(x)的表达式·
求微分方程xdy+(x一2y)dx=0的一个解y=y(x),使得由曲线y=y(x)与直线x=1,x=2以及x轴所围成的平面图形绕x轴旋转一周的旋转体体积最小.
n阶对称矩阵的全体V对于矩阵的线性运算构成一个维线性空间.给出n阶可逆矩阵P,以A表示V中的任一元素,试证合同变换TA=PTAP,是V中的线性变换.
设则二次型的对应矩阵是__________.
已知的一个特征向量.问A能否相似对角化,并说明理由.
随机试题
已知点A(1,1,1),点B(3,x,y),且向量与向量=(2,3,4)平行,则x等于()
Thelittlemanwas______onemetrefiftyhigh.
男,20岁,足球赛后右膝关节疼痛,行走时交锁。体检:右膝关节肿胀,外侧压痛明显。诊断该疾病准确率较高的是
李某在甲地修建了一栋别墅,在不动产登记簿上登记地址为乙地,后经县政府查明,李某的别墅违法占道,限期李某自行拆除,到期李某并未拆除,于是县政府对李某别墅进行了强拆,李某不服,向市政府申请复议,市政府认为县政府的行为合法,作了维持决定,李某不服,提起诉讼。下列
阀门应按规范要求进行强度和严密性试验,试验应在每批(同牌号、同型号、同规格)数量中抽查(),且不少于一个。
土的渗透性主要取决于土体的( )。
交易账户内的所有项目均应按市场价格计价。()
1.2018年5月16日,天津市发布了新人才引进政策——“海河英才”行动计划,放宽对学历型人才、资格型人才、技能型人才、创业型人才和急需型人才的落户条件。根据这一政策,在津无工作、无房、无社保,年龄不超过40周岁的全日制高校毕业本科生可“零门槛”直接落户。
已知下列非齐次线性方程组求解方程组(a).
Thecommunicationsexplosionisonthescaleoftherail,automobileortelephonerevolution.Verysoonyou’llbeabletorecord
最新回复
(
0
)