首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
三门炮同时独立地对同一个目标进行炮击,各发射一发炮弹,第一、二、三门炮击中目标的概率分别为0.4,0.5,0.7,目标中1,2,3弹被击毁的概率分别为0.2,0.6,0.8.(1)求炮击后目标被击毁的概率p;(2)已知目标被击毁,求目标中2弹的概率q.
三门炮同时独立地对同一个目标进行炮击,各发射一发炮弹,第一、二、三门炮击中目标的概率分别为0.4,0.5,0.7,目标中1,2,3弹被击毁的概率分别为0.2,0.6,0.8.(1)求炮击后目标被击毁的概率p;(2)已知目标被击毁,求目标中2弹的概率q.
admin
2016-01-11
26
问题
三门炮同时独立地对同一个目标进行炮击,各发射一发炮弹,第一、二、三门炮击中目标的概率分别为0.4,0.5,0.7,目标中1,2,3弹被击毁的概率分别为0.2,0.6,0.8.(1)求炮击后目标被击毁的概率p;(2)已知目标被击毁,求目标中2弹的概率q.
选项
答案
(1)设A表示事件“目标被击毁”,B
i
表示事件“目标中i弹(i=0,1,2,3)”,由事件的独立性,有 P(B
0
)=(1一0.4)(1一0.5)(1一0.7)=0.09, P(B
1
)=0.4×(1—0.5)(1—0.7)+(1—0.4)×0.5×(1—0.7) +(1一0.4)(1一0.5)×0.7=0.36, P(B
2
)=0.4×0.5×(1一0.7)+0.4×(1一0.5)×0.7 +(1一0.4)×0.5×0.7=0.41, P(B
3
)=0.4×0.5×0.7=0.14. 由已知,有 P(A|B
0
)-0,P(A|B
1
)=0.2,P(A|B
2
)=0.6,P(A|B
3
)=0.8. 根据全概率公式,有 p=P(A)=[*]P(B
i
)P(A|B
i
) =0×0.09+0.36×0.2+0.41×0.6+0.14×0.8=0.43. (2)根据贝叶斯公式,有 q=P(B
2
|A)=[*]=0.57.
解析
随机试验分为两个阶段,炮击后目标可能没有中弹,或被击中1弹、2弹、3弹,目标是否被击毁的概率由所中炮弹个数决定,考虑用全概率公式.
转载请注明原文地址:https://kaotiyun.com/show/mY34777K
0
考研数学二
相关试题推荐
设y=y(x)由方程y=f(x2+y2)+f(x+y)确定,且y(0)=2,其中f(x)可导,且f’(2)=1/2,f’(4)=1,则y’(0)=________.
设f(x)在[0,+∞)上二阶可导,f(0)=0,f”(x)>0,当0<a<x<b时,有()
设u(x,y)的全微分为du=[e-x-f’(x)]ydx+f’(x)dy,f(x)有二阶连续导数,且f(0)=1,f’(0)=1.求f(x)的极值.
设A=,b=,方程组Ax=b有无穷多解.(Ⅰ)求a的值及Ax=b的通解;(Ⅱ)求一个正交变换x=Qy,化二次型f(x1,x2,x3)=xTAx为标准形.(Ⅲ)求一个可逆线性变换将(Ⅱ)中的f(x1,x2,x3)化为规范形.
设A3×3是秩为1的实对称矩阵,λ1=2是A的一个特征值,其对应的特征向量为a1=(-1,1,1)T,则方程组Ax=0的基础解系为()
求一条平行于x轴的直线,使它与y=sinx(0≤x≤3π)相交于四点,并使该直线与y=sinx围成的三个图形面积之和最小.
已知一抛物线过Ox轴上两点A(1,0)、B(3,0),记0≤x≤1时,抛物线与Ox轴、Oy轴围成的平面图形为S1,在1≤x≤3上抛物线与Ox轴围成的平面图形为S2.求S1与S2绕Oy轴旋转一周所产生的两个旋转体的体积之比.
计算曲线积分I=∮Lydx+zdy+zdz,其中L是球面x2+y2+z2=R2与平面x+z=R的交线,方向由(R,0,0)出发,先经过x>0,y>0部分,再经过x>0,y<0部分回到出发点.
设ξ为f(x)=arctanx在[0,a]上使用微分中值定理的中值,则为().
双纽线(x2+y2)2=x2-y2所围成的区域面积可用定积分表示为________。
随机试题
居住建筑的燃气引入管敷设在下列()位置是正确的。
在Word中,使用“页面设置”,可以()。
患者,女,31岁,患有"神经衰弱"。常觉心悸怔忡,失眠多梦,头晕健忘,气短、乏力,纳差,月经量多,面色萎黄,舌淡苔薄白,脉细数,宜选用
慢性胃窦炎最主要的病因是
下列属于有机材料的是()。
公积金个人住房贷款贷后管理的内容包括()。
甲公司属于一般纳税人,具有交通运输业资质,2015年9月发生下列业务:(1)向境内乙公司提供货物运输劳务,取得含增值税运费收入865.8万元;向境内丙公司提供客运劳务,取得含增值税运费收入77.7万元;(2)提供国际运输服务,取得不含税运费收入50万元
根据下述材料,回答问题。三名学生都试图探讨学习动机和学习成绩之间的关系。学生A随机抽取了90名大学生,用学习动机量表施测,然后计算动机分数与这些学生的某一学科成绩分数的相关。学生B随机抽取90名大学生,用学习动机量表施测,根据
SeminarScheduleAlllectureswillbefrom9:00a.m.to12:25p.m.PleasenotethattherewillbenolectureonMay5.To:Kimb
Aninsuranceagentcalledmethismorning.Thisparticularagentwantedtodiscussmyautomobilecoverage,butthenextagentto
最新回复
(
0
)