首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
三门炮同时独立地对同一个目标进行炮击,各发射一发炮弹,第一、二、三门炮击中目标的概率分别为0.4,0.5,0.7,目标中1,2,3弹被击毁的概率分别为0.2,0.6,0.8.(1)求炮击后目标被击毁的概率p;(2)已知目标被击毁,求目标中2弹的概率q.
三门炮同时独立地对同一个目标进行炮击,各发射一发炮弹,第一、二、三门炮击中目标的概率分别为0.4,0.5,0.7,目标中1,2,3弹被击毁的概率分别为0.2,0.6,0.8.(1)求炮击后目标被击毁的概率p;(2)已知目标被击毁,求目标中2弹的概率q.
admin
2016-01-11
46
问题
三门炮同时独立地对同一个目标进行炮击,各发射一发炮弹,第一、二、三门炮击中目标的概率分别为0.4,0.5,0.7,目标中1,2,3弹被击毁的概率分别为0.2,0.6,0.8.(1)求炮击后目标被击毁的概率p;(2)已知目标被击毁,求目标中2弹的概率q.
选项
答案
(1)设A表示事件“目标被击毁”,B
i
表示事件“目标中i弹(i=0,1,2,3)”,由事件的独立性,有 P(B
0
)=(1一0.4)(1一0.5)(1一0.7)=0.09, P(B
1
)=0.4×(1—0.5)(1—0.7)+(1—0.4)×0.5×(1—0.7) +(1一0.4)(1一0.5)×0.7=0.36, P(B
2
)=0.4×0.5×(1一0.7)+0.4×(1一0.5)×0.7 +(1一0.4)×0.5×0.7=0.41, P(B
3
)=0.4×0.5×0.7=0.14. 由已知,有 P(A|B
0
)-0,P(A|B
1
)=0.2,P(A|B
2
)=0.6,P(A|B
3
)=0.8. 根据全概率公式,有 p=P(A)=[*]P(B
i
)P(A|B
i
) =0×0.09+0.36×0.2+0.41×0.6+0.14×0.8=0.43. (2)根据贝叶斯公式,有 q=P(B
2
|A)=[*]=0.57.
解析
随机试验分为两个阶段,炮击后目标可能没有中弹,或被击中1弹、2弹、3弹,目标是否被击毁的概率由所中炮弹个数决定,考虑用全概率公式.
转载请注明原文地址:https://kaotiyun.com/show/mY34777K
0
考研数学二
相关试题推荐
设级数都收敛,则()
设A是3阶矩阵,α1,α2,α3是3维列向量且α1≠0,Aα1=kα1,Aα2=α1+kα2,Aα3=α2十kα3,则()
设A为3阶实对称矩阵,β=(3,3,3)T,方程组Ax=β的通解为k1(-1,2,-1)T+k2(0,-1,1)T+(1,1,1)T(k1,k2为任意常数).求正交矩阵Q,使得Q-1AQ=A.
n维向量α=1/2.0,…,0,1/2)T,A=E—4ααT,β=(1,1,…,I)T,则Aβ的长度为
设当x→0时,是等价的无穷小,则常数a=__________.
曲面上任一点处的切平面在三个坐标轴上的截距之和为().
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g"(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证:在开区间(a,b)内g(x)≠0.
设A是三阶实对称阵,λ1=一1,λ2=λ3=1是A的特征值,对应于λ1的特征向量为ξ1=[0,1,1]T,求A.
(2010年)当0≤θ≤π时,对数螺线r=eθ的弧长为_______.
(2006年)已知曲线L的方程为(Ⅰ)讨论L的凹凸性;(Ⅱ)过点(-1,0)引L的切线,求切点(χ0,y0),并写出切线的方程;(Ⅲ)求此切线与L(对应于χ≤χ0的部分)及χ轴所围成的平面图形的面积.
随机试题
某女,56岁。心前区疼痛5年,每逢秋冬季加重,近半月时感心前区刺痛,且放射至左肩背部,伴心悸胸闷,舌质紫暗,脉细涩。辨证为
抛物线y2=4x与直线x=3所围成的平面图形绕x轴旋转一周形成的旋转体体积是()。
相对于直接融资来说,间接融资的信誉度较高,风险性相对较小,融资的稳定性较强。()
在美国、加拿大和英围,早餐麦片极受欢迎,是最盈利的行业之一。但是,在法国、德国、意大利以及其他很多国家,早餐麦片就不怎么受欢迎,利润也不高。这体现的是()。
美术是人类感受美、表现美和创造美的重要形式,也是表达自己对周围世界的认识和情绪态度的独特方式。()
下列说法不是杜威实用主义教育学论点的是()。
坚持中国特色新型工业化道路,就要做到()。
47,53,64,36,38,62,29,()
天气预报能为我们的生活提供良好的帮助,它属于计算机的()应用。
Anyphysicaltheoryisalwaysprovisional,inthesensethatitisonlyahypothesis;youcanneverproveit.Nomatterhowmany
最新回复
(
0
)