首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)为(-∞,+∞)上的连续奇函数,且单调增加,F(x)=∫0x(2t-x)f(x-t)dt,则F(x)是
设f(x)为(-∞,+∞)上的连续奇函数,且单调增加,F(x)=∫0x(2t-x)f(x-t)dt,则F(x)是
admin
2018-06-27
94
问题
设f(x)为(-∞,+∞)上的连续奇函数,且单调增加,F(x)=∫
0
x
(2t-x)f(x-t)dt,则F(x)是
选项
A、单调增加的奇函数.
B、单调增加的偶函数.
C、单调减小的奇函数.
D、单调减小的偶函数.
答案
C
解析
对被积函数作变量替换u=x-t,就有
F(x)=∫
0
x
(2t-x)f(x-t)dt=∫
0
x
(x-2u)f(u)du=x∫
0
x
f(u)du-2∫
0
x
uf(u)du.
由于f(x)为奇函数,故∫
0
x
f(u)du为偶函数,于是x∫
0
x
f(u)du为奇函数,又因uf(u)为偶函数,从而
∫
0
x
uf(u)du为奇函数,所以F(x)为奇函数.又
F’(x)=∫
0
x
f(u)du+xf(x)-2xf(x)=∫
0
x
f(u)du-xf(x),
由积分中值定理知在0与x之间存在ξ使得∫
0
x
f(u)du=xf(ξ).从而F’(x)=x[f(ξ)-f(x)],无论x>0,还是x<0,由f(x)单调增加,都有F’(x)<0,从而应选(C).
其实,由F’(x)=∫
0
x
f(u)du-xf(x)=∫
0
x
[f(u)-f(x)]du及f(x)单调增加也可得F’(x)<0.
转载请注明原文地址:https://kaotiyun.com/show/Gak4777K
0
考研数学二
相关试题推荐
设z=z(x,y)是由9x2一54xy+90y2一6yz—z2+18=0确定的函数,求z=z(x,y)的极值点和极值.
已知曲线在直角坐标系中由参数方程给出:求y(x)的单调区间与极值点;
已知A=(α1,α2,α3,α4)是4阶矩阵,α1,α2,α3,α4是4维列向量,若方程组Ax=β的通解是(1,2,2,1)T+k(1,一2,4,0)T,又B=(α3,α2,α1,β一α4).求方程组Bx=αl—α2的通解.
设试求:函数f(a)的定义域;
下列矩阵中属于正定矩阵的是
设f(x)在(一∞,+∞)是连续函数,求y’’+y’=f(x)的通解.
设二次型xTAx=x12+4x22+x32+2ax1x2+2bx1x3+2cx2x3,矩阵A满足AB=0,其中用正交变换化二次型xTAx为标准形,并写出所用正交变换;
设函数f(x),g(x)在区间[0,b]上连续,且f(x)单调增加,0≤g(x)≤1.证明:
设3维向量组α1,α2线性无关,β1,β2线性无关.证明:存在非零3维向量ξ1,ξ2既可由α1,α2线性表出,也可由β1,β2线性表出;
设D={(x,y)|x2+y2≤,x≥0,y≥0},[1+x2+y2]表示不超过1+x2+y2的最大整数.计算二重积分
随机试题
设x∈[-1,1],则arcsinx+arccosx=_________.
脂肪细胞不能利用甘油是因为缺乏
半夏的归经是()
疝囊壁部分由腹内脏器构成的腹外疝属
治疗厥阴头痛用
对于洁净厂房防火,下列说法正确的是()。
在汉朝以前,史书上关于蹴鞠的记载只有零星碎片,但是从中不难看出,蹴鞠至少起源于春秋战国时代,而且兼具娱乐和锻炼的性质,并且在此后的数千年中,蹴鞠一直兼具这两种性质。到了汉代,蹴鞠得到快速发展。最先对蹴鞠的发展起到关键作用的人物,是刘邦的父亲刘太公。刘邦称帝
Workingatnonstandardtimes—evenings,nights,orweekends—istakingitstollonAmericanfamilies.One-fifthofallemployedAm
一个关系中属性个数为1时,称此关系为
Somepeoplethinkofpoliticsasagame.Butanonlinegamemakespeople【B1】______themselvesdoingoneofthehardestjobsinAm
最新回复
(
0
)