首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3维向量组α1,α2线性无关,β1,β2线性无关. 证明:存在非零3维向量ξ1,ξ2既可由α1,α2线性表出,也可由β1,β2线性表出;
设3维向量组α1,α2线性无关,β1,β2线性无关. 证明:存在非零3维向量ξ1,ξ2既可由α1,α2线性表出,也可由β1,β2线性表出;
admin
2014-04-16
95
问题
设3维向量组α
1
,α
2
线性无关,β
1
,β
2
线性无关.
证明:存在非零3维向量ξ
1
,ξ
2
既可由α
1
,α
2
线性表出,也可由β
1
,β
2
线性表出;
选项
答案
α
1
,α
2
,β
1
,β
2
均是3维向量,4个3维向量必线性相关,由定义,存在不全为零的数k
1
,k
2
,λ
1
,λ
2
.使得k
1
α
1
+k
2
α
2
+λ
1
β
1
+λ
2
β
2
=0,得k
1
α
1
+k
2
α
2
+k
1
β
1
-λ
2
β
2
.取ξ=k
1
α
1
+k
2
α
2
=一λ
1
β
1
—λ
2
β
2
,若ξ=0.则k
1
α
1
+k
2
α
2
=-λ
1
β
1
-λ
2
β
2
=0.因α
1
,α
2
线性无关,β
1
,β
2
也线性无关,从而得出λ
1
=λ
2
=0,且λ
1
=λ
2
=0。这和4个3维向量线性相关矛盾,故ξ≠0,ξ即为所求的既可由α
1
,α
2
线性表出,也可由β
1
,β
2
线性表出的非零向量
解析
转载请注明原文地址:https://kaotiyun.com/show/LH34777K
0
考研数学二
相关试题推荐
(2016年)设其中D1={(x,y)|0≤x≤1,0≤y≤1},D3={(x,y)|0≤x≤1,0≤y≤),D3={(x,y)|0≤x≤1,x2≤y≤1},则()
(14年)设α1,α2,α3均为3维向量,则对任意常数k,l,向量组α1+kα3,α2+lα3线性无关是向量组α1,α2,α3线性无关的【】
(2015年)设函数y=y(x)是微分方程y’’+y’一2y=0的解,且在x=0处y(x)取得极值3,则y(x)=______.
(2011年)曲线直线x=2及x轴所围的平面图形绕z轴旋转所成的旋转体的体积为______.
(89年)设α1=(1,1,1),α2=(1,2,3),α3=(1,3,t)(1)问当t为何值时,向量组α1,α2,α3线性无关?(2)问当t为何值时,向量组α1,α2,α3线性相关?(3)当向量组α1,α2,α3线性相关时,
设A为三阶矩阵,α1,α2,α3是三维线性无关的向量组,且Aα1=α1+3α2,Aα2=5α1-α2,Aα3=α1-α2+4α3,(Ⅰ)求矩阵A的特征值;(Ⅱ)求可逆矩阵Q,使得Q-1AQ为对角矩阵。
已知y=f(ex+y)确定隐函数y=y(x),其中f二阶可导且其一阶导数f′≠1,求
设f(x,y)=则f(x,y)在点(0,0)处()。
设α1,α2,α3,α4为4维列向量组,其中α1,α2,α1线性尤关,α4=α1+α2+2α3,记A=(α1-α2,α2+α3,-α1+α2+α3),且方程组Ax=α4有无穷多解,求:(1)常数a的值;(2)方程组Ax=α4的通解。
微分方程y”+4y=x+cos2x的特解可设为()
随机试题
成就需要理论的提出者是()。
恶性胸膜间皮瘤标准的根治术不包括的范围是
前置胎盘时阴道出血的特征是
含钼丰富的食物包括
在土地估价过程中,确定估价期日是重要的内容之一,对估价结果有着直接的影响。关于估价期日,以下理解正确的是()。
国内外有许多施工成本管理方法,选用施工成本管理方法应遵循的原则之一是()。
市场失灵而社会又需要的公共物品和服务的领域需要体现的是公共财政的()。
下列各项资本成本中,通常作为衡量资本结构是否合理的重要依据的是()。
某企业盈余公积年初余额为80万元,本年利润总额为600万元,所得税费用为150万元,按净利润的10%提取法定盈余公积,并将盈余公积15万元转增资本。该企业盈余公积年末余额为()万元。
TheOriginsofPlantandAnimalDomesticationP1:Plantandanimaldomesticationisthemostmonumentaldevelopmenttohavetake
最新回复
(
0
)