首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在(a,b)内存在二阶导数,且f"(x)<0.试证: (1)若x0∈(a,b),则对于(a,b)内的任何x,有 f(x0)≥f(x)一f(x0)(x—x0), 当且仅当x=x0时等号成立; (2)若x1,x2,…,xn
设函数f(x)在(a,b)内存在二阶导数,且f"(x)<0.试证: (1)若x0∈(a,b),则对于(a,b)内的任何x,有 f(x0)≥f(x)一f(x0)(x—x0), 当且仅当x=x0时等号成立; (2)若x1,x2,…,xn
admin
2020-03-16
32
问题
设函数f(x)在(a,b)内存在二阶导数,且f"(x)<0.试证:
(1)若x
0
∈(a,b),则对于(a,b)内的任何x,有
f(x
0
)≥f(x)一f(x
0
)(x—x
0
),
当且仅当x=x
0
时等号成立;
(2)若x
1
,x
2
,…,x
n
∈(a,b),且x
i
<x
i+1
(i=1,2,…,n一1),则
,
其中常数k
i
>0(i=1,2,…,n)且∑
k
i
=1.
选项
答案
(1)将f(x)在x
0
点泰勒展开,即 f(x)=f(x
0
)+f’(x
0
)(x一x
0
)+[*](x一x
0
)
2
,ξ在x
0
与x之间. 由已知f"(x)<0,x∈(a,b)得 [*](x一x
0
)
2
≤0(当且仅当x=x
0
时等号成立) 于是f(x)≤f(x
0
)+f’(x
0
)(x一x
0
),即 f(x
0
)≥f(x)一f’(x
0
)(x—x
0
)(当且仅当x=x
0
时等号成立). (2)因为x
1
=[*]∈(a,b). 取x
0
=[*],对x
i
(i=1,2,…,n)利用(1)的结果有 f(x
0
)≥f(x
i
)一f(x
0
)(x
i
一x
0
),i=1,2,…,n, 当且仅当x
i
=x
0
时等号成立. 而x
0
≠x
1
且x
0
≠x
n
,将上面各式分别乘以k
i
(i=1,2,…,n)后再求和,有 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Gb84777K
0
考研数学二
相关试题推荐
设A是n阶实反对称矩阵,证明(E-A)(E+A)-1是正交矩阵.
设f(x)=其中g(x)有二阶连续导数,且g(0)=1,g’(0)=一1,求f’(x),并讨论f’(x)在(一∞,+∞)内的连续性.
求u=x2+y2+z2在=1上的最小值.
已知f(x)二阶可导,且f(x)>0,f(x)f"(x)一[f’(x)]2≥0(x∈R).(1)证明:f(x1)f(x2)≥f2x1,x2∈R);(2)若f(0)=1,证明:f(x)≥ef’(0)xx(x∈R).
把y看作自变量,χ为因变量,变换方程=χ.
求下列函数f(χ)在χ=0处带拉格朗日余项的n阶泰勒公式:(Ⅰ)f(χ)=;(Ⅱ)f(χ)=eχsinχ.
求曲线x3一xy+y3=1(x≥0,y≥0)上的点到坐标原点的最长距离与最短距离。
[2003年]已知平面上三条不同直线的方程分别为l1:ax+2by+3c=0,l2:bx+2cy+3a=0,l3:cx+2ay+3b=0.试证这三条直线交于一点的充分必要条件为a+b+c=0.
[2012年]计算二重积分xydσ,其中区域D为曲线r=1+cosθ(0≤θ≤π)与极轴围成.
设函数f(x)在闭区间[0,1]上可微.对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f’(x)≠1,证明:在(0,1)内有且仅有一个x,使得f(x)=x.
随机试题
某发展中国家所面临的问题是,要维持它的经济发展,必须不断加强国内企业的竞争力;要保持社会稳定,必须不断建立健全养老、医疗、失业等社会保障体系。而要建立健全社会保障体系,则需要企业每年为职工缴纳一定比例的社会保险费。如果企业每年为职工缴纳这样比例的社会保险费
指出海螵蛸的功效及临床主要应用。
瓷全冠肩台预备要求
A、油管B、油室C、油细胞D、树脂道E、乳管防风组织中有()
合用发汗解表力强,治风寒表实无汗功著的药组是( )。合用善宣肺降气而平喘止咳,治喘咳气逆功著的药组是( )。
项目竣工报告是由()编制的项目实施总结。
提高党员素质,应该()。
金融市场上实现的资金分配与资金流动对下列经济活动产生影响()
商品内在的使用价值和价值的矛盾,其完备的外在表现是
在下列选项中,()不属于信息资源管理标准化的指导原则。
最新回复
(
0
)